BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31805048)

  • 1. Cluster analysis on high dimensional RNA-seq data with applications to cancer research - An evaluation study.
    Vidman L; Källberg D; Rydén P
    PLoS One; 2019; 14(12):e0219102. PubMed ID: 31805048
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.
    Crider K; Williams J; Qi YP; Gutman J; Yeung L; Mai C; Finkelstain J; Mehta S; Pons-Duran C; Menéndez C; Moraleda C; Rogers L; Daniels K; Green P
    Cochrane Database Syst Rev; 2022 Feb; 2(2022):. PubMed ID: 36321557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of cancer subtypes from single-cell RNA-seq data using a consensus clustering method.
    Gan Y; Li N; Zou G; Xin Y; Guan J
    BMC Med Genomics; 2018 Dec; 11(Suppl 6):117. PubMed ID: 30598115
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subtype identification from heterogeneous TCGA datasets on a genomic scale by multi-view clustering with enhanced consensus.
    Cai M; Li L
    BMC Med Genomics; 2017 Dec; 10(Suppl 4):75. PubMed ID: 29322925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clustering of RNA-Seq samples: Comparison study on cancer data.
    Jaskowiak PA; Costa IG; Campello RJGB
    Methods; 2018 Jan; 132():42-49. PubMed ID: 28778489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clustering methods for single-cell RNA-sequencing expression data: performance evaluation with varying sample sizes and cell compositions.
    Suner A
    Stat Appl Genet Mol Biol; 2019 Aug; 18(5):. PubMed ID: 31646845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-cell RNA-seq data clustering: A survey with performance comparison study.
    Li R; Guan J; Zhou S
    J Bioinform Comput Biol; 2020 Aug; 18(4):2040005. PubMed ID: 32795134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous estimation of cluster number and feature sparsity in high-dimensional cluster analysis.
    Li Y; Zeng X; Lin CW; Tseng GC
    Biometrics; 2022 Jun; 78(2):574-585. PubMed ID: 33621349
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Subject level clustering using a negative binomial model for small transcriptomic studies.
    Li Q; Noel-MacDonnell JR; Koestler DC; Goode EL; Fridley BL
    BMC Bioinformatics; 2018 Dec; 19(1):474. PubMed ID: 30541426
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scHFC: a hybrid fuzzy clustering method for single-cell RNA-seq data optimized by natural computation.
    Wang J; Xia J; Tan D; Lin R; Su Y; Zheng CH
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35136924
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-cell RNA-seq interpretations using evolutionary multiobjective ensemble pruning.
    Li X; Zhang S; Wong KC
    Bioinformatics; 2019 Aug; 35(16):2809-2817. PubMed ID: 30596898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Statistical power for cluster analysis.
    Dalmaijer ES; Nord CL; Astle DE
    BMC Bioinformatics; 2022 May; 23(1):205. PubMed ID: 35641905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geographical clustering of lung cancer in the province of Lecce, Italy: 1992-2001.
    Bilancia M; Fedespina A
    Int J Health Geogr; 2009 Jul; 8():40. PubMed ID: 19570225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [SENTIERI - Epidemiological Study of Residents in National Priority Contaminated Sites. Sixth Report].
    Zona A; Fazzo L; Benedetti M; Bruno C; Vecchi S; Pasetto R; Minichilli F; De Santis M; Nannavecchia AM; Di Fonzo D; Contiero P; Ricci P; Bisceglia L; Manno V; Minelli G; Santoro M; Gorini F; Ancona C; Scondotto S; Soggiu ME; Scaini F; Beccaloni E; Marsili D; Villa MF; Maifredi G; Magoni M; Iavarone I;
    Epidemiol Prev; 2023; 47(1-2 Suppl 1):1-286. PubMed ID: 36825373
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive Total-Variation Regularized Low-Rank Representation for Analyzing Single-Cell RNA-seq Data.
    Liu JX; Wang CY; Gao YL; Zhang Y; Wang J; Li SJ
    Interdiscip Sci; 2021 Sep; 13(3):476-489. PubMed ID: 34076860
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering.
    Freyhult E; Landfors M; Önskog J; Hvidsten TR; Rydén P
    BMC Bioinformatics; 2010 Oct; 11():503. PubMed ID: 20937082
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dirichlet process mixture models for single-cell RNA-seq clustering.
    Adossa NA; Rytkönen KT; Elo LL
    Biol Open; 2022 Apr; 11(4):. PubMed ID: 35237784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A parameter-free deep embedded clustering method for single-cell RNA-seq data.
    Zeng Y; Wei Z; Zhong F; Pan Z; Lu Y; Yang Y
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35524494
    [TBL] [Abstract][Full Text] [Related]  

  • 20. scHinter: imputing dropout events for single-cell RNA-seq data with limited sample size.
    Ye P; Ye W; Ye C; Li S; Ye L; Ji G; Wu X
    Bioinformatics; 2020 Feb; 36(3):789-797. PubMed ID: 31392316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.