These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31805217)

  • 1. Deuteron Quadrupolar Chemical Exchange Saturation Transfer (Q-CEST) Solid-State NMR for Static Powder Samples: Approach and Applications to Amyloid-β Fibrils.
    Vugmeyster L; Ostrovsky D; Fu R
    Chemphyschem; 2020 Feb; 21(3):220-231. PubMed ID: 31805217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deuteron Solid-State NMR Relaxation Measurements Reveal Two Distinct Conformational Exchange Processes in the Disordered N-Terminal Domain of Amyloid-β Fibrils.
    Vugmeyster L; Au DF; Ostrovsky D; Fu R
    Chemphyschem; 2019 Jul; 20(13):1680-1689. PubMed ID: 31087613
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recent developments in deuterium solid-state NMR for the detection of slow motions in proteins.
    Vugmeyster L
    Solid State Nucl Magn Reson; 2021 Feb; 111():101710. PubMed ID: 33450712
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deuterium solid-state NMR quadrupolar order rotating frame relaxation with applications to amyloid-β fibrils.
    Vugmeyster L; Ostrovsky D
    Magn Reson Chem; 2021 Sep; 59(9-10):853-863. PubMed ID: 33161607
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deuteron Chemical Exchange Saturation Transfer for the Detection of Slow Motions in Rotating Solids.
    Vugmeyster L; Ostrovsky D; Greenwood A; Fu R
    Front Mol Biosci; 2021; 8():705572. PubMed ID: 34386521
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparative Hydrophobic Core Dynamics Between Wild-Type Amyloid-β Fibrils, Glutamate-3 Truncation, and Serine-8 Phosphorylation.
    Vugmeyster L; Fai Au D; Smith MC; Ostrovsky D
    Chemphyschem; 2022 Feb; 23(3):e202100709. PubMed ID: 34837296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Deuteron off-resonance rotating frame relaxation for the characterization of slow motions in rotating and static solid-state proteins.
    Vugmeyster L; Rodgers A; Ostrovsky D; James McKnight C; Fu R
    J Magn Reson; 2023 Jul; 352():107493. PubMed ID: 37271094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solid-state NMR reveals a comprehensive view of the dynamics of the flexible, disordered N-terminal domain of amyloid-β fibrils.
    Au DF; Ostrovsky D; Fu R; Vugmeyster L
    J Biol Chem; 2019 Apr; 294(15):5840-5853. PubMed ID: 30737281
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Cross-Seeding of Wild-Type Amyloid-β
    Rodgers A; Sawaged M; Ostrovsky D; Vugmeyster L
    J Phys Chem B; 2023 Apr; 127(13):2887-2899. PubMed ID: 36952330
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Basic experiments in
    Vugmeyster L; Ostrovsky D
    Methods; 2018 Sep; 148():136-145. PubMed ID: 29705208
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Amyloid fibril formation by A beta 16-22, a seven-residue fragment of the Alzheimer's beta-amyloid peptide, and structural characterization by solid state NMR.
    Balbach JJ; Ishii Y; Antzutkin ON; Leapman RD; Rizzo NW; Dyda F; Reed J; Tycko R
    Biochemistry; 2000 Nov; 39(45):13748-59. PubMed ID: 11076514
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flexibility and Solvation of Amyloid-β Hydrophobic Core.
    Vugmeyster L; Clark MA; Falconer IB; Ostrovsky D; Gantz D; Qiang W; Hoatson GL
    J Biol Chem; 2016 Aug; 291(35):18484-95. PubMed ID: 27402826
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A CEST NMR experiment to obtain glycine
    Tiwari VP; Vallurupalli P
    J Biomol NMR; 2020 Sep; 74(8-9):443-455. PubMed ID: 32696193
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fast Motions of Key Methyl Groups in Amyloid-β Fibrils.
    Vugmeyster L; Ostrovsky D; Clark MA; Falconer IB; Hoatson GL; Qiang W
    Biophys J; 2016 Nov; 111(10):2135-2148. PubMed ID: 27851938
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative analysis of
    Somberg NH; Gelenter MD; Hong M
    J Biomol NMR; 2021 May; 75(4-5):151-166. PubMed ID: 33844106
    [TBL] [Abstract][Full Text] [Related]  

  • 16. MOMD Analysis of NMR Line Shapes from Aβ-Amyloid Fibrils: A New Tool for Characterizing Molecular Environments in Protein Aggregates.
    Meirovitch E; Liang Z; Freed JH
    J Phys Chem B; 2018 May; 122(18):4793-4801. PubMed ID: 29624402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Solid-state NMR sequential assignment of an Amyloid-β(1-42) fibril polymorph.
    Ravotti F; Wälti MA; Güntert P; Riek R; Böckmann A; Meier BH
    Biomol NMR Assign; 2016 Oct; 10(2):269-76. PubMed ID: 27165577
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conformational Dynamics in the Core of Human Y145Stop Prion Protein Amyloid Probed by Relaxation Dispersion NMR.
    Shannon MD; Theint T; Mukhopadhyay D; Surewicz K; Surewicz WK; Marion D; Schanda P; Jaroniec CP
    Chemphyschem; 2019 Jan; 20(2):311-317. PubMed ID: 30276945
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamics of Serine-8 Side-Chain in Amyloid-β Fibrils and Fluorenylmethyloxycarbonyl Serine Amino Acid, Investigated by Solid-State Deuteron NMR.
    Vugmeyster L; Au DF; Ostrovsky D; Rickertsen DRL; Reed SM
    J Phys Chem B; 2020 Jun; 124(23):4723-4731. PubMed ID: 32396356
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quenched hydrogen-deuterium exchange NMR of a disease-relevant Aβ(1-42) amyloid polymorph.
    Wälti MA; Orts J; Riek R
    PLoS One; 2017; 12(3):e0172862. PubMed ID: 28319116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.