BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 31805238)

  • 1. Conformational Biases of α-Synuclein and Formation of Transient Knots.
    Chwastyk M; Cieplak M
    J Phys Chem B; 2020 Jan; 124(1):11-19. PubMed ID: 31805238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of minimally interacting modules in an intrinsically disordered protein.
    Sethi A; Tian J; Vu DM; Gnanakaran S
    Biophys J; 2012 Aug; 103(4):748-57. PubMed ID: 22947936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of implicit solvent models in molecular dynamics simulation of α-Synuclein.
    Savva L; Platts JA
    J Biomol Struct Dyn; 2023 Jul; 41(11):5230-5245. PubMed ID: 35670576
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Coarse-Grained Molecular Dynamics Approach to the Study of the Intrinsically Disordered Protein α-Synuclein.
    Ramis R; Ortega-Castro J; Casasnovas R; Mariño L; Vilanova B; Adrover M; Frau J
    J Chem Inf Model; 2019 Apr; 59(4):1458-1471. PubMed ID: 30933517
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational ensemble of native α-synuclein in solution as determined by short-distance crosslinking constraint-guided discrete molecular dynamics simulations.
    Brodie NI; Popov KI; Petrotchenko EV; Dokholyan NV; Borchers CH
    PLoS Comput Biol; 2019 Mar; 15(3):e1006859. PubMed ID: 30917118
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Folding Free-Energy Landscape of α-Synuclein (35-97) Via Replica Exchange Molecular Dynamics.
    Jain K; Ghribi O; Delhommelle J
    J Chem Inf Model; 2021 Jan; 61(1):432-443. PubMed ID: 33350818
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transient β-hairpin formation in α-synuclein monomer revealed by coarse-grained molecular dynamics simulation.
    Yu H; Han W; Ma W; Schulten K
    J Chem Phys; 2015 Dec; 143(24):243142. PubMed ID: 26723627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structural heterogeneity of α-synuclein is governed by several distinct subpopulations with interconversion times slower than milliseconds.
    Chen J; Zaer S; Drori P; Zamel J; Joron K; Kalisman N; Lerner E; Dokholyan NV
    Structure; 2021 Sep; 29(9):1048-1064.e6. PubMed ID: 34015255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Conformational characteristics of unstructured peptides: alpha-synuclein.
    Yoon J; Park J; Jang S; Lee K; Shin S
    J Biomol Struct Dyn; 2008 Apr; 25(5):505-15. PubMed ID: 18282005
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular simulations of the fluctuating conformational dynamics of intrinsically disordered proteins.
    Smith WW; Schreck CF; Hashem N; Soltani S; Nath A; Rhoades E; O'Hern CS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Oct; 86(4 Pt 1):041910. PubMed ID: 23214618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of different force fields on the structural character of α synuclein β-hairpin peptide (35-56) in aqueous environment.
    Kundu S
    J Biomol Struct Dyn; 2018 Feb; 36(2):302-317. PubMed ID: 28024449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Transient knots in intrinsically disordered proteins and neurodegeneration.
    Cieplak M; Chwastyk M; Mioduszewski Ł; de Aquino BRH
    Prog Mol Biol Transl Sci; 2020; 174():79-103. PubMed ID: 32828471
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Using Dimensionality Reduction to Systematically Expand Conformational Sampling of Intrinsically Disordered Peptides.
    Kukharenko O; Sawade K; Steuer J; Peter C
    J Chem Theory Comput; 2016 Oct; 12(10):4726-4734. PubMed ID: 27588692
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turn-directed α-β conformational transition of α-syn12 peptide at different pH revealed by unbiased molecular dynamics simulations.
    Liu L; Cao Z
    Int J Mol Sci; 2013 May; 14(6):10896-907. PubMed ID: 23708094
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Conformational ensemble of human α-synuclein physiological form predicted by molecular simulations.
    Rossetti G; Musiani F; Abad E; Dibenedetto D; Mouhib H; Fernandez CO; Carloni P
    Phys Chem Chem Phys; 2016 Feb; 18(8):5702-6. PubMed ID: 26553504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Intrinsic Conformational Preferences and Interactions in α-Synuclein Fibrils: Insights from Molecular Dynamics Simulations.
    Ilie IM; Nayar D; den Otter WK; van der Vegt NFA; Briels WJ
    J Chem Theory Comput; 2018 Jun; 14(6):3298-3310. PubMed ID: 29715424
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Local and Global Dynamics in Intrinsically Disordered Synuclein.
    Rezaei-Ghaleh N; Parigi G; Soranno A; Holla A; Becker S; Schuler B; Luchinat C; Zweckstetter M
    Angew Chem Int Ed Engl; 2018 Nov; 57(46):15262-15266. PubMed ID: 30184304
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Osmolytes on Conformational Behavior of Intrinsically Disordered Protein α-Synuclein.
    Jahan I; Nayeem SM
    Biophys J; 2019 Nov; 117(10):1922-1934. PubMed ID: 31699336
    [TBL] [Abstract][Full Text] [Related]  

  • 19. α-Synuclein dimer structures found from computational simulations.
    Sahu KK; Woodside MT; Tuszynski JA
    Biochimie; 2015 Sep; 116():133-40. PubMed ID: 26193124
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the Basis of α-Synuclein Aggregation by Comparing Simulations to Single-Molecule Experiments.
    Churchill CDM; Healey MA; Preto J; Tuszynski JA; Woodside MT
    Biophys J; 2019 Sep; 117(6):1125-1135. PubMed ID: 31477241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.