BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 31805238)

  • 41. Transient Secondary and Tertiary Structure Formation Kinetics in the Intrinsically Disordered State of α-Synuclein from Atomistic Simulations.
    Graen T; Klement R; Grupi A; Haas E; Grubmüller H
    Chemphyschem; 2018 Oct; 19(19):2507-2511. PubMed ID: 30047198
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Influence of EGCG on α-synuclein (αS) aggregation and identification of their possible binding mode: A computational study using molecular dynamics simulation.
    Liu X; Zhou S; Shi D; Bai Q; Liu H; Yao X
    Chem Biol Drug Des; 2018 Jan; 91(1):162-171. PubMed ID: 28667699
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The role of the acidic domain of α-synuclein in amyloid fibril formation: a molecular dynamics study.
    Park S; Yoon J; Jang S; Lee K; Shin S
    J Biomol Struct Dyn; 2016; 34(2):376-83. PubMed ID: 25869255
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Distinct residual and disordered structures of alpha-synuclein analyzed by amide-proton exchange and NMR signal intensity.
    Okuwaki R; Shinmura I; Morita S; Matsugami A; Hayashi F; Goto Y; Nishimura C
    Biochim Biophys Acta Proteins Proteom; 2020 Sep; 1868(9):140464. PubMed ID: 32497661
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Simultaneous IR-Spectroscopic Observation of α-Synuclein, Lipids, and Solvent Reveals an Alternative Membrane-Induced Oligomerization Pathway.
    Fallah MA; Gerding HR; Scheibe C; Drescher M; Karreman C; Schildknecht S; Leist M; Hauser K
    Chembiochem; 2017 Dec; 18(23):2312-2316. PubMed ID: 28980756
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Alternative Structures of α-Synuclein.
    Dułak D; Gadzała M; Banach M; Konieczny L; Roterman I
    Molecules; 2020 Jan; 25(3):. PubMed ID: 32019169
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational Study on the Role of γ-Synuclein in Inhibiting the α-Synuclein Aggregation.
    Sanjeev A; Mattaparthi VSK
    Cent Nerv Syst Agents Med Chem; 2019; 19(1):24-30. PubMed ID: 30318002
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Segmental conformational disorder and dynamics in the intrinsically disordered protein α-synuclein and its chain length dependence.
    Grupi A; Haas E
    J Mol Biol; 2011 Feb; 405(5):1267-83. PubMed ID: 21108951
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Potential of mean force and molecular dynamics study on the transient interactions between α and β synuclein that drive inhibition of α-synuclein aggregation.
    Sanjeev A; Sahu RK; Mattaparthi VSK
    J Biomol Struct Dyn; 2017 Nov; 35(15):3342-3353. PubMed ID: 27809690
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Conformational dynamics of full-length inducible human Hsp70 derived from microsecond molecular dynamics simulations in explicit solvent.
    Nicolaï A; Delarue P; Senet P
    J Biomol Struct Dyn; 2013 Oct; 31(10):1111-26. PubMed ID: 23075261
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Parametrization of Backbone Flexibility in a Coarse-Grained Force Field for Proteins (COFFDROP) Derived from All-Atom Explicit-Solvent Molecular Dynamics Simulations of All Possible Two-Residue Peptides.
    Frembgen-Kesner T; Andrews CT; Li S; Ngo NA; Shubert SA; Jain A; Olayiwola OJ; Weishaar MR; Elcock AH
    J Chem Theory Comput; 2015 May; 11(5):2341-54. PubMed ID: 26574429
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative analysis of Poisson-Boltzmann implicit solvent in molecular dynamics.
    Wang J; Tan C; Chanco E; Luo R
    Phys Chem Chem Phys; 2010 Feb; 12(5):1194-202. PubMed ID: 20094685
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Connecting free energy surfaces in implicit and explicit solvent: an efficient method to compute conformational and solvation free energies.
    Deng N; Zhang BW; Levy RM
    J Chem Theory Comput; 2015 Jun; 11(6):2868-78. PubMed ID: 26236174
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Free energy landscape of protein folding in water: explicit vs. implicit solvent.
    Zhou R
    Proteins; 2003 Nov; 53(2):148-61. PubMed ID: 14517967
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of the A30P mutation on the structural dynamics of micelle-bound αSynuclein released in water: a molecular dynamics study.
    Chatterjee P; Sengupta N
    Eur Biophys J; 2012 May; 41(5):483-9. PubMed ID: 22446722
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A coarse grained protein model with internal degrees of freedom. Application to α-synuclein aggregation.
    Ilie IM; den Otter WK; Briels WJ
    J Chem Phys; 2016 Feb; 144(8):085103. PubMed ID: 26931727
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Structure and dynamics of end-to-end loop formation of the penta-peptide Cys-Ala-Gly-Gln-Trp in implicit solvents.
    Yeh IC; Wallqvist A
    J Phys Chem B; 2009 Sep; 113(36):12382-90. PubMed ID: 19685925
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Residual Structures and Transient Long-Range Interactions of p53 Transactivation Domain: Assessment of Explicit Solvent Protein Force Fields.
    Liu X; Chen J
    J Chem Theory Comput; 2019 Aug; 15(8):4708-4720. PubMed ID: 31241933
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Speed of conformational change: comparing explicit and implicit solvent molecular dynamics simulations.
    Anandakrishnan R; Drozdetski A; Walker RC; Onufriev AV
    Biophys J; 2015 Mar; 108(5):1153-64. PubMed ID: 25762327
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Phase transitions and structure analysis in wild-type, A30P, E46K, and A53T mutants of α-synuclein.
    Healey MA; Woodside MT; Tuszynski JA
    Eur Biophys J; 2016 May; 45(4):355-64. PubMed ID: 26695014
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.