These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 31805335)
1. i4mC-ROSE, a bioinformatics tool for the identification of DNA N4-methylcytosine sites in the Rosaceae genome. Hasan MM; Manavalan B; Khatun MS; Kurata H Int J Biol Macromol; 2020 Aug; 157():752-758. PubMed ID: 31805335 [TBL] [Abstract][Full Text] [Related]
2. i4mC-EL: Identifying DNA N4-Methylcytosine Sites in the Mouse Genome Using Ensemble Learning. Li Y; Zhao Z; Teng Z Biomed Res Int; 2021; 2021():5515342. PubMed ID: 34159192 [TBL] [Abstract][Full Text] [Related]
3. i4mC-Mouse: Improved identification of DNA N4-methylcytosine sites in the mouse genome using multiple encoding schemes. Hasan MM; Manavalan B; Shoombuatong W; Khatun MS; Kurata H Comput Struct Biotechnol J; 2020; 18():906-912. PubMed ID: 32322372 [No Abstract] [Full Text] [Related]
4. 4mC-CGRU: Identification of N4-Methylcytosine (4mC) sites using convolution gated recurrent unit in Rosaceae genome. Sultana A; Mitu SJ; Pathan MN; Uddin MN; Uddin MA; Aryal S Comput Biol Chem; 2023 Dec; 107():107974. PubMed ID: 37944386 [TBL] [Abstract][Full Text] [Related]
5. i4mC-Deep: An Intelligent Predictor of N4-Methylcytosine Sites Using a Deep Learning Approach with Chemical Properties. Alam W; Tayara H; Chong KT Genes (Basel); 2021 Jul; 12(8):. PubMed ID: 34440291 [TBL] [Abstract][Full Text] [Related]
6. i6mA-Fuse: improved and robust prediction of DNA 6 mA sites in the Rosaceae genome by fusing multiple feature representation. Hasan MM; Manavalan B; Shoombuatong W; Khatun MS; Kurata H Plant Mol Biol; 2020 May; 103(1-2):225-234. PubMed ID: 32140819 [TBL] [Abstract][Full Text] [Related]
7. Meta-i6mA: an interspecies predictor for identifying DNA N6-methyladenine sites of plant genomes by exploiting informative features in an integrative machine-learning framework. Hasan MM; Basith S; Khatun MS; Lee G; Manavalan B; Kurata H Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32910169 [TBL] [Abstract][Full Text] [Related]
8. DNC4mC-Deep: Identification and Analysis of DNA N4-Methylcytosine Sites Based on Different Encoding Schemes By Using Deep Learning. Wahab A; Mahmoudi O; Kim J; Chong KT Cells; 2020 Jul; 9(8):. PubMed ID: 32707969 [TBL] [Abstract][Full Text] [Related]
9. 4mCPred-CNN-Prediction of DNA N4-Methylcytosine in the Mouse Genome Using a Convolutional Neural Network. Abbas Z; Tayara H; Chong KT Genes (Basel); 2021 Feb; 12(2):. PubMed ID: 33672576 [TBL] [Abstract][Full Text] [Related]
10. Identifying DNA N4-methylcytosine sites in the rosaceae genome with a deep learning model relying on distributed feature representation. Khanal J; Tayara H; Zou Q; Chong KT Comput Struct Biotechnol J; 2021; 19():1612-1619. PubMed ID: 33868598 [TBL] [Abstract][Full Text] [Related]
11. Computational identification of N4-methylcytosine sites in the mouse genome with machine-learning method. Zulfiqar H; Khan RS; Hassan F; Hippe K; Hunt C; Ding H; Song XM; Cao R Math Biosci Eng; 2021 Apr; 18(4):3348-3363. PubMed ID: 34198389 [TBL] [Abstract][Full Text] [Related]
12. i4mC-GRU: Identifying DNA N Nguyen-Vo TH; Trinh QH; Nguyen L; Nguyen-Hoang PU; Rahardja S; Nguyen BP Comput Struct Biotechnol J; 2023; 21():3045-3053. PubMed ID: 37273848 [TBL] [Abstract][Full Text] [Related]
13. 4mCpred-EL: An Ensemble Learning Framework for Identification of DNA Manavalan B; Basith S; Shin TH; Lee DY; Wei L; Lee G Cells; 2019 Oct; 8(11):. PubMed ID: 31661923 [TBL] [Abstract][Full Text] [Related]
14. Deep4mC: systematic assessment and computational prediction for DNA N4-methylcytosine sites by deep learning. Xu H; Jia P; Zhao Z Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32578842 [TBL] [Abstract][Full Text] [Related]
15. i6mA-stack: A stacking ensemble-based computational prediction of DNA N6-methyladenine (6mA) sites in the Rosaceae genome. Khanal J; Lim DY; Tayara H; Chong KT Genomics; 2021 Jan; 113(1 Pt 2):582-592. PubMed ID: 33010390 [TBL] [Abstract][Full Text] [Related]
16. Iterative feature representations improve N4-methylcytosine site prediction. Wei L; Su R; Luan S; Liao Z; Manavalan B; Zou Q; Shi X Bioinformatics; 2019 Dec; 35(23):4930-4937. PubMed ID: 31099381 [TBL] [Abstract][Full Text] [Related]
17. MDR: an integrative DNA N6-methyladenine and N4-methylcytosine modification database for Rosaceae. Liu ZY; Xing JF; Chen W; Luan MW; Xie R; Huang J; Xie SQ; Xiao CL Hortic Res; 2019; 6():78. PubMed ID: 31240103 [TBL] [Abstract][Full Text] [Related]
18. iDNA4mC: identifying DNA N4-methylcytosine sites based on nucleotide chemical properties. Chen W; Yang H; Feng P; Ding H; Lin H Bioinformatics; 2017 Nov; 33(22):3518-3523. PubMed ID: 28961687 [TBL] [Abstract][Full Text] [Related]
19. 4mCPred: machine learning methods for DNA N4-methylcytosine sites prediction. He W; Jia C; Zou Q Bioinformatics; 2019 Feb; 35(4):593-601. PubMed ID: 30052767 [TBL] [Abstract][Full Text] [Related]
20. DeepTorrent: a deep learning-based approach for predicting DNA N4-methylcytosine sites. Liu Q; Chen J; Wang Y; Li S; Jia C; Song J; Li F Brief Bioinform; 2021 May; 22(3):. PubMed ID: 32608476 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]