BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

360 related articles for article (PubMed ID: 31805540)

  • 21. Photopolymerizable Resins for 3D-Printing Solid-Cured Tissue Engineered Implants.
    Guerra AJ; Lara-Padilla H; Becker ML; Rodriguez CA; Dean D
    Curr Drug Targets; 2019; 20(8):823-838. PubMed ID: 30648506
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.
    Jung JW; Lee JS; Cho DW
    Sci Rep; 2016 Feb; 6():21685. PubMed ID: 26899876
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Applications of 3D printing in the management of severe spinal conditions.
    Provaggi E; Leong JJH; Kalaskar DM
    Proc Inst Mech Eng H; 2017 Jun; 231(6):471-486. PubMed ID: 27658427
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Multiscale Porosity in Compressible Cryogenically 3D Printed Gels for Bone Tissue Engineering.
    Gupta D; Singh AK; Dravid A; Bellare J
    ACS Appl Mater Interfaces; 2019 Jun; 11(22):20437-20452. PubMed ID: 31081613
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implantable Medical Devices and Tissue Engineering: An Overview of Manufacturing Processes and the Use of Polymeric Matrices for Manufacturing and Coating their Surfaces.
    Dutra GVS; Neto WS; Dutra JPS; Machado F
    Curr Med Chem; 2020; 27(10):1580-1599. PubMed ID: 30215330
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Application of quality by design for 3D printed bone prostheses and scaffolds.
    Martinez-Marquez D; Mirnajafizadeh A; Carty CP; Stewart RA
    PLoS One; 2018; 13(4):e0195291. PubMed ID: 29649231
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Three-dimensional printing of high-content graphene scaffolds for electronic and biomedical applications.
    Jakus AE; Secor EB; Rutz AL; Jordan SW; Hersam MC; Shah RN
    ACS Nano; 2015; 9(4):4636-48. PubMed ID: 25858670
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Colloidal Materials for 3D Printing.
    Zhu C; Pascall AJ; Dudukovic N; Worsley MA; Kuntz JD; Duoss EB; Spadaccini CM
    Annu Rev Chem Biomol Eng; 2019 Jun; 10():17-42. PubMed ID: 30951639
    [TBL] [Abstract][Full Text] [Related]  

  • 29. 3D Cell Printing of Functional Skeletal Muscle Constructs Using Skeletal Muscle-Derived Bioink.
    Choi YJ; Kim TG; Jeong J; Yi HG; Park JW; Hwang W; Cho DW
    Adv Healthc Mater; 2016 Oct; 5(20):2636-2645. PubMed ID: 27529631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A review on fabrication of 3D printed biomaterials using optical methodologies for tissue engineering applications.
    John P; Antony IR; Whenish R; Jinoop AN
    Proc Inst Mech Eng H; 2022 Nov; 236(11):1583-1594. PubMed ID: 36112752
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bionic mechanical design and 3D printing of novel porous Ti6Al4V implants for biomedical applications.
    Peng WM; Liu YF; Jiang XF; Dong XT; Jun J; Baur DA; Xu JJ; Pan H; Xu X
    J Zhejiang Univ Sci B; 2019 Aug.; 20(8):647-659. PubMed ID: 31273962
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Granular gel support-enabled extrusion of three-dimensional alginate and cellular structures.
    Jin Y; Compaan A; Bhattacharjee T; Huang Y
    Biofabrication; 2016 Jun; 8(2):025016. PubMed ID: 27257095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Implementations of 3D printing in ophthalmology.
    Sommer AC; Blumenthal EZ
    Graefes Arch Clin Exp Ophthalmol; 2019 Sep; 257(9):1815-1822. PubMed ID: 30993457
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Current and emerging applications of 3D printing in medicine.
    Liaw CY; Guvendiren M
    Biofabrication; 2017 Jun; 9(2):024102. PubMed ID: 28589921
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanoscale 3D Bioprinting for Osseous Tissue Manufacturing.
    Wang Y; Gao M; Wang D; Sun L; Webster TJ
    Int J Nanomedicine; 2020; 15():215-226. PubMed ID: 32021175
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Current advances and future perspectives of 3D printing natural-derived biopolymers.
    Liu J; Sun L; Xu W; Wang Q; Yu S; Sun J
    Carbohydr Polym; 2019 Mar; 207():297-316. PubMed ID: 30600012
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional printing of nanomaterial scaffolds for complex tissue regeneration.
    O'Brien CM; Holmes B; Faucett S; Zhang LG
    Tissue Eng Part B Rev; 2015 Feb; 21(1):103-14. PubMed ID: 25084122
    [TBL] [Abstract][Full Text] [Related]  

  • 38. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D Printing of Medicines: Engineering Novel Oral Devices with Unique Design and Drug Release Characteristics.
    Goyanes A; Wang J; Buanz A; Martínez-Pacheco R; Telford R; Gaisford S; Basit AW
    Mol Pharm; 2015 Nov; 12(11):4077-84. PubMed ID: 26473653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimising the biocompatibility of 3D printed photopolymer constructs in vitro and in vivo.
    Ngan CGY; O'Connell CD; Blanchard R; Boyd-Moss M; Williams RJ; Bourke J; Quigley A; McKelvie P; Kapsa RMI; Choong PFM
    Biomed Mater; 2019 Mar; 14(3):035007. PubMed ID: 30795002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 18.