These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
142 related articles for article (PubMed ID: 31805544)
1. Process-induced cell damage: pneumatic versus screw-driven bioprinting. Ning L; Yang B; Mohabatpour F; Betancourt N; Sarker MD; Papagerakis P; Chen X Biofabrication; 2020 Feb; 12(2):025011. PubMed ID: 31805544 [TBL] [Abstract][Full Text] [Related]
2. 3D bioprinting of scaffolds with living Schwann cells for potential nerve tissue engineering applications. Ning L; Sun H; Lelong T; Guilloteau R; Zhu N; Schreyer DJ; Chen X Biofabrication; 2018 Jun; 10(3):035014. PubMed ID: 29911990 [TBL] [Abstract][Full Text] [Related]
3. Calcium supplementation of bioinks reduces shear stress-induced cell damage during bioprinting. Fischer L; Nosratlo M; Hast K; Karakaya E; Ströhlein N; Esser TU; Gerum R; Richter S; Engel FB; Detsch R; Fabry B; Thievessen I Biofabrication; 2022 Aug; 14(4):. PubMed ID: 35896101 [TBL] [Abstract][Full Text] [Related]
4. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties. Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655 [TBL] [Abstract][Full Text] [Related]
5. Study of gelatin as an effective energy absorbing layer for laser bioprinting. Xiong R; Zhang Z; Chai W; Chrisey DB; Huang Y Biofabrication; 2017 Jun; 9(2):024103. PubMed ID: 28597844 [TBL] [Abstract][Full Text] [Related]
6. Three-dimensional direct cell bioprinting for tissue engineering. Ozler SB; Bakirci E; Kucukgul C; Koc B J Biomed Mater Res B Appl Biomater; 2017 Nov; 105(8):2530-2544. PubMed ID: 27689939 [TBL] [Abstract][Full Text] [Related]
7. Study of the process-induced cell damage in forced extrusion bioprinting. Han S; Kim CM; Jin S; Kim TY Biofabrication; 2021 Jun; 13(3):. PubMed ID: 34020427 [TBL] [Abstract][Full Text] [Related]
8. Influence of Flow Behavior of Alginate-Cell Suspensions on Cell Viability and Proliferation. Ning L; Guillemot A; Zhao J; Kipouros G; Chen X Tissue Eng Part C Methods; 2016 Jul; 22(7):652-62. PubMed ID: 27166436 [TBL] [Abstract][Full Text] [Related]
9. Tunable hydrogel composite with two-step processing in combination with innovative hardware upgrade for cell-based three-dimensional bioprinting. Wüst S; Godla ME; Müller R; Hofmann S Acta Biomater; 2014 Feb; 10(2):630-40. PubMed ID: 24157694 [TBL] [Abstract][Full Text] [Related]
10. Characterization of Cell Damage and Proliferative Ability during and after Bioprinting. Ning L; Betancourt N; Schreyer DJ; Chen X ACS Biomater Sci Eng; 2018 Nov; 4(11):3906-3918. PubMed ID: 33429605 [TBL] [Abstract][Full Text] [Related]
11. Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity. Blaeser A; Duarte Campos DF; Puster U; Richtering W; Stevens MM; Fischer H Adv Healthc Mater; 2016 Feb; 5(3):326-33. PubMed ID: 26626828 [TBL] [Abstract][Full Text] [Related]
12. Effect of bioink properties on printability and cell viability for 3D bioplotting of embryonic stem cells. Ouyang L; Yao R; Zhao Y; Sun W Biofabrication; 2016 Sep; 8(3):035020. PubMed ID: 27634915 [TBL] [Abstract][Full Text] [Related]
13. Bioprintable, cell-laden silk fibroin-gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Das S; Pati F; Choi YJ; Rijal G; Shim JH; Kim SW; Ray AR; Cho DW; Ghosh S Acta Biomater; 2015 Jan; 11():233-46. PubMed ID: 25242654 [TBL] [Abstract][Full Text] [Related]
14. Assessment of hydrogels for bioprinting of endothelial cells. Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G J Biomed Mater Res A; 2018 Apr; 106(4):935-947. PubMed ID: 29119674 [TBL] [Abstract][Full Text] [Related]
15. Dual-Stage Crosslinking of a Gel-Phase Bioink Improves Cell Viability and Homogeneity for 3D Bioprinting. Dubbin K; Hori Y; Lewis KK; Heilshorn SC Adv Healthc Mater; 2016 Oct; 5(19):2488-2492. PubMed ID: 27581767 [TBL] [Abstract][Full Text] [Related]
16. Microfluidic Bioprinting of Heterogeneous 3D Tissue Constructs. Colosi C; Costantini M; Barbetta A; Dentini M Methods Mol Biol; 2017; 1612():369-380. PubMed ID: 28634956 [TBL] [Abstract][Full Text] [Related]
17. Cross-Linkable Microgel Composite Matrix Bath for Embedded Bioprinting of Perfusable Tissue Constructs and Sculpting of Solid Objects. Compaan AM; Song K; Chai W; Huang Y ACS Appl Mater Interfaces; 2020 Feb; 12(7):7855-7868. PubMed ID: 31948226 [TBL] [Abstract][Full Text] [Related]
18. Viscoll collagen solution as a novel bioink for direct 3D bioprinting. Osidak EO; Karalkin PA; Osidak MS; Parfenov VA; Sivogrivov DE; Pereira FDAS; Gryadunova AA; Koudan EV; Khesuani YD; Кasyanov VA; Belousov SI; Krasheninnikov SV; Grigoriev TE; Chvalun SN; Bulanova EA; Mironov VA; Domogatsky SP J Mater Sci Mater Med; 2019 Mar; 30(3):31. PubMed ID: 30830351 [TBL] [Abstract][Full Text] [Related]
19. Simulations of 3D bioprinting: predicting bioprintability of nanofibrillar inks. Göhl J; Markstedt K; Mark A; Håkansson K; Gatenholm P; Edelvik F Biofabrication; 2018 Jun; 10(3):034105. PubMed ID: 29809162 [TBL] [Abstract][Full Text] [Related]
20. A 3D cell printed muscle construct with tissue-derived bioink for the treatment of volumetric muscle loss. Choi YJ; Jun YJ; Kim DY; Yi HG; Chae SH; Kang J; Lee J; Gao G; Kong JS; Jang J; Chung WK; Rhie JW; Cho DW Biomaterials; 2019 Jun; 206():160-169. PubMed ID: 30939408 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]