These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

232 related articles for article (PubMed ID: 31805639)

  • 1. Mesenchymal Stem Cell Therapy for Spinal Cord Contusion: A Comparative Study on Small and Large Animal Models.
    Mukhamedshina Y; Shulman I; Ogurcov S; Kostennikov A; Zakirova E; Akhmetzyanova E; Rogozhin A; Masgutova G; James V; Masgutov R; Lavrov I; Rizvanov A
    Biomolecules; 2019 Dec; 9(12):. PubMed ID: 31805639
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of Mesenchymal Stromal Cells Isolated from Murine Adipose Tissue and Bone Marrow in the Treatment of Spinal Cord Injury.
    Takahashi A; Nakajima H; Uchida K; Takeura N; Honjoh K; Watanabe S; Kitade M; Kokubo Y; Johnson WEB; Matsumine A
    Cell Transplant; 2018 Jul; 27(7):1126-1139. PubMed ID: 29947256
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bone marrow stem cells and polymer hydrogels--two strategies for spinal cord injury repair.
    Syková E; Jendelová P; Urdzíková L; Lesný P; Hejcl A
    Cell Mol Neurobiol; 2006; 26(7-8):1113-29. PubMed ID: 16633897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intravenous administration of mesenchymal stem cells derived from bone marrow after contusive spinal cord injury improves functional outcome.
    Osaka M; Honmou O; Murakami T; Nonaka T; Houkin K; Hamada H; Kocsis JD
    Brain Res; 2010 Jul; 1343():226-35. PubMed ID: 20470759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adipose-Derived Mesenchymal Stem Cell Application Combined With Fibrin Matrix Promotes Structural and Functional Recovery Following Spinal Cord Injury in Rats.
    Mukhamedshina YO; Akhmetzyanova ER; Kostennikov AA; Zakirova EY; Galieva LR; Garanina EE; Rogozin AA; Kiassov AP; Rizvanov AA
    Front Pharmacol; 2018; 9():343. PubMed ID: 29692732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Co-Transplantation of Human Umbilical Cord Mesenchymal Stem Cells and Human Neural Stem Cells Improves the Outcome in Rats with Spinal Cord Injury.
    Sun L; Wang F; Chen H; Liu D; Qu T; Li X; Xu D; Liu F; Yin Z; Chen Y
    Cell Transplant; 2019 Jul; 28(7):893-906. PubMed ID: 31012325
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intra-bladder wall transplantation of bone marrow mesenchymal stem cells improved urinary bladder dysfunction following spinal cord injury.
    Salehi-Pourmehr H; Rahbarghazi R; Mahmoudi J; Roshangar L; Chapple CR; Hajebrahimi S; Abolhasanpour N; Azghani MR
    Life Sci; 2019 Mar; 221():20-28. PubMed ID: 30735734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SDF-1 overexpression by mesenchymal stem cells enhances GAP-43-positive axonal growth following spinal cord injury.
    Stewart AN; Matyas JJ; Welchko RM; Goldsmith AD; Zeiler SE; Hochgeschwender U; Lu M; Nan Z; Rossignol J; Dunbar GL
    Restor Neurol Neurosci; 2017; 35(4):395-411. PubMed ID: 28598857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of mesenchymal stromal cells from human bone marrow and adipose tissue for the treatment of spinal cord injury.
    Zhou Z; Chen Y; Zhang H; Min S; Yu B; He B; Jin A
    Cytotherapy; 2013 Apr; 15(4):434-48. PubMed ID: 23376106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of mesenchymal stem cells derived from fat, bone marrow, Wharton's jelly, and umbilical cord blood for treating spinal cord injuries in dogs.
    Ryu HH; Kang BJ; Park SS; Kim Y; Sung GJ; Woo HM; Kim WH; Kweon OK
    J Vet Med Sci; 2012 Dec; 74(12):1617-30. PubMed ID: 22878503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining cell therapy with human autologous Schwann cell and bone marrow-derived mesenchymal stem cell in patients with subacute complete spinal cord injury: safety considerations and possible outcomes.
    Oraee-Yazdani S; Akhlaghpasand M; Golmohammadi M; Hafizi M; Zomorrod MS; Kabir NM; Oraee-Yazdani M; Ashrafi F; Zali A; Soleimani M
    Stem Cell Res Ther; 2021 Aug; 12(1):445. PubMed ID: 34372939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. hUC-MSC-mediated recovery of subacute spinal cord injury through enhancing the pivotal subunits β3 and γ2 of the GABA
    Cao T; Chen H; Huang W; Xu S; Liu P; Zou W; Pang M; Xu Y; Bai X; Liu B; Rong L; Cui ZK; Li M
    Theranostics; 2022; 12(7):3057-3078. PubMed ID: 35547766
    [No Abstract]   [Full Text] [Related]  

  • 13. Early and sustained improvements in motor function in rats after infusion of allogeneic umbilical cord-derived mesenchymal stem cells following spinal cord injury.
    Moinuddin FM; Yolcu YU; Wahood W; Siddiqui AM; Chen BK; Alvi MA; Goyal A; Nesbitt JJ; Windebank AJ; Yeh JC; Petrucci K; Bydon M
    Spinal Cord; 2021 Mar; 59(3):319-327. PubMed ID: 33139846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of human mesenchymal stem cells derived from dental pulp, bone marrow, adipose tissue, and umbilical cord tissue by gene expression.
    Stanko P; Kaiserova K; Altanerova V; Altaner C
    Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub; 2014 Sep; 158(3):373-7. PubMed ID: 24145770
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of the Anti-Inflammatory Effects of Mouse Adipose- and Bone-Marrow-Derived Multilineage-Differentiating Stress-Enduring Cells in Acute-Phase Spinal Cord Injury.
    Nagaoki T; Kumagai G; Nitobe Y; Sasaki A; Fujita T; Fukutoku T; Saruta K; Tsukuda M; Asari T; Wada K; Dezawa M; Ishibashi Y
    J Neurotrauma; 2023 Dec; 40(23-24):2596-2609. PubMed ID: 37051701
    [No Abstract]   [Full Text] [Related]  

  • 16. Improving Culture Conditions, Proliferation, and Migration of Porcine Mesenchymal Stem Cells on Spinal Cord Contusion Injury Model in vitro.
    Mukhamedshina Y; Zhuravleva M; Sergeev M; Zakirova E; Gracheva O; Mukhutdinova D; Rizvanov A
    Cells Tissues Organs; 2020; 209(4-6):236-247. PubMed ID: 33508824
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of bone marrow derived mesenchymal stromal cells and Schwann-like cells transplantation on spinal cord injury in adult male albino rats.
    Galhom RA; Hussein Abd El Raouf HH; Mohammed Ali MH
    Biomed Pharmacother; 2018 Dec; 108():1365-1375. PubMed ID: 30372839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Human Mesenchymal Stem Cells for Spinal Cord Injury.
    Alishahi M; Anbiyaiee A; Farzaneh M; Khoshnam SE
    Curr Stem Cell Res Ther; 2020; 15(4):340-348. PubMed ID: 32178619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human bone marrow-derived and umbilical cord-derived mesenchymal stem cells for alleviating neuropathic pain in a spinal cord injury model.
    Yousefifard M; Nasirinezhad F; Shardi Manaheji H; Janzadeh A; Hosseini M; Keshavarz M
    Stem Cell Res Ther; 2016 Mar; 7():36. PubMed ID: 26957122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bone marrow mesenchymal stromal cells and olfactory ensheathing cells transplantation after spinal cord injury--a morphological and functional comparison in rats.
    Torres-Espín A; Redondo-Castro E; Hernández J; Navarro X
    Eur J Neurosci; 2014 May; 39(10):1704-17. PubMed ID: 24635194
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.