These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

311 related articles for article (PubMed ID: 31805652)

  • 1. Bioengineered Skin Substitutes: the Role of Extracellular Matrix and Vascularization in the Healing of Deep Wounds.
    Urciuolo F; Casale C; Imparato G; Netti PA
    J Clin Med; 2019 Dec; 8(12):. PubMed ID: 31805652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Concise Review on Tissue Engineered Artificial Skin Grafts for Chronic Wound Treatment: Can We Reconstruct Functional Skin Tissue In Vitro?
    Przekora A
    Cells; 2020 Jul; 9(7):. PubMed ID: 32640572
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tissue engineering of skin and regenerative medicine for wound care.
    Boyce ST; Lalley AL
    Burns Trauma; 2018; 6():4. PubMed ID: 30009192
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tissue Engineered Skin and Wound Healing: Current Strategies and Future Directions.
    Bhardwaj N; Chouhan D; Mandal BB
    Curr Pharm Des; 2017; 23(24):3455-3482. PubMed ID: 28552069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From Grafts to Human Bioengineered Vascularized Skin Substitutes.
    Oualla-Bachiri W; Fernández-González A; Quiñones-Vico MI; Arias-Santiago S
    Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33147759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioengineered Wound Healing Skin Models: The Role of Immune Response and Endogenous ECM to Fully Replicate the Dynamic of Scar Tissue Formation In Vitro.
    Urciuolo F; Passariello R; Imparato G; Casale C; Netti PA
    Bioengineering (Basel); 2022 May; 9(6):. PubMed ID: 35735476
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in Skin Substitutes-Potential of Tissue Engineered Skin for Facilitating Anti-Fibrotic Healing.
    Varkey M; Ding J; Tredget EE
    J Funct Biomater; 2015 Jul; 6(3):547-63. PubMed ID: 26184327
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Higher numbers of autologous fibroblasts in an artificial dermal substitute improve tissue regeneration and modulate scar tissue formation.
    Lamme EN; Van Leeuwen RT; Brandsma K; Van Marle J; Middelkoop E
    J Pathol; 2000 Apr; 190(5):595-603. PubMed ID: 10727986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dermal matrices and bioengineered skin substitutes: a critical review of current options.
    Debels H; Hamdi M; Abberton K; Morrison W
    Plast Reconstr Surg Glob Open; 2015 Jan; 3(1):e284. PubMed ID: 25674365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategies to Induce Blood Vessel Ingrowth into Skin Grafts and Tissue-Engineered Substitutes.
    Hosseini M; Brown J; Shafiee A
    Tissue Eng Part C Methods; 2022 Mar; 28(3):113-126. PubMed ID: 35172639
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Surgical Device to Study the Efficacy of Bioengineered Skin Substitutes in Mice Wound Healing Models.
    Jeschke MG; Sadri AR; Belo C; Amini-Nik S
    Tissue Eng Part C Methods; 2017 Apr; 23(4):237-242. PubMed ID: 28338428
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Advancement of wound care from grafts to bioengineered smart skin substitutes.
    Augustine R; Kalarikkal N; Thomas S
    Prog Biomater; 2014 Dec; 3(2-4):103-113. PubMed ID: 29470769
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Silk Fibroin-Based Bioengineered Scaffold for Enabling Hemostasis and Skin Regeneration of Critical-Size Full-Thickness Heat-Induced Burn Wounds.
    Ramakrishnan R; Chouhan D; Vijayakumar Sreelatha H; Arumugam S; Mandal BB; Krishnan LK
    ACS Biomater Sci Eng; 2022 Sep; 8(9):3856-3870. PubMed ID: 35969223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioengineered matrices--part 1: attaining structural success in biologic skin substitutes.
    Widgerow AD
    Ann Plast Surg; 2012 Jun; 68(6):568-73. PubMed ID: 22643101
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Advances in Skin Tissue Bioengineering and the Challenges of Clinical Translation.
    Dearman BL; Boyce ST; Greenwood JE
    Front Surg; 2021; 8():640879. PubMed ID: 34504864
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bioengineered dermal substitutes for the management of traumatic periocular tissue loss.
    Chen TA; Ayala-Haedo JA; Blessing NW; Topping K; Alabiad CR; Erickson BP
    Orbit; 2018 Apr; 37(2):115-120. PubMed ID: 28891728
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accelerated epithelialization and improved wound healing metrics in porcine full-thickness wounds transplanted with full-thickness skin micrografts.
    Rettinger CL; Fletcher JL; Carlsson AH; Chan RK
    Wound Repair Regen; 2017 Sep; 25(5):816-827. PubMed ID: 28922518
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gene-modified tissue-engineered skin: the next generation of skin substitutes.
    Andreadis ST
    Adv Biochem Eng Biotechnol; 2007; 103():241-74. PubMed ID: 17195466
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An Overview on the Manufacturing of Functional and Mature Cellular Skin Substitutes.
    Ríos-Galacho M; Martínez-Moreno D; López-Ruiz E; Gálvez-Martín P; Marchal JA
    Tissue Eng Part B Rev; 2022 Oct; 28(5):1035-1052. PubMed ID: 34652978
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 16.