These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 31805679)

  • 1. Revealing Nanoindentation Size-Dependent Creep Behavior in a La-Based Metallic Glassy Film.
    Ma Y; Song Y; Zhang T
    Nanomaterials (Basel); 2019 Dec; 9(12):. PubMed ID: 31805679
    [TBL] [Abstract][Full Text] [Related]  

  • 2. On the Room-Temperature Creep Behavior and Its Correlation with Length Scale of a LiTaO
    Hang W; Huang X; Liu M; Ma Y
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31847453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Testing Effects on Shear Transformation Zone Size of Metallic Glassy Films Under Nanoindentation.
    Ma Y; Song Y; Huang X; Chen Z; Zhang T
    Micromachines (Basel); 2018 Nov; 9(12):. PubMed ID: 30513605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Strain Rate Sensitivity and Creep Behavior for the Tripler Plane of Potassium Dihydrogen Phosphate Crystal by Nanoindentation.
    Mao J; Liu W; Li D; Zhang C; Ma Y
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33808140
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Revealing the Plastic Mode of Time-Dependent Deformation of a LiTaO
    Zhou S; Huang X; Lu C; Liu Y; Zhang T; Ma Y
    Micromachines (Basel); 2020 Sep; 11(9):. PubMed ID: 32967191
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Room-Temperature Creep Behavior and Activation Volume of Dislocation Nucleation in a LiTaO
    Ma Y; Huang X; Song Y; Hang W; Zhang T
    Materials (Basel); 2019 May; 12(10):. PubMed ID: 31126139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Measurement of Creep Stress Exponent of TC17 Titanium Alloy by Nanoindentation Method at Room Temperature.
    Li F; Chen X; Wang Y; Zhao G; Yang Y
    Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629993
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nano-Mechanical Properties and Creep Behavior of Ti6Al4V Fabricated by Powder Bed Fusion Electron Beam Additive Manufacturing.
    Peng H; Fang W; Dong C; Yi Y; Wei X; Luo B; Huang S
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34206046
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of Applied Stress on the Mechanical Properties of a Zr-Cu-Ag-Al Bulk Metallic Glass with Two Different Structure States.
    Chen H; Zhang T; Ma Y
    Materials (Basel); 2017 Jun; 10(7):. PubMed ID: 28773065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The effect of holding time on nanoindentation measurements of creep in bone.
    Wu Z; Baker TA; Ovaert TC; Niebur GL
    J Biomech; 2011 Apr; 44(6):1066-72. PubMed ID: 21353675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Activation Energy of Strain Bursts during Nanoindentation Creep on Polyethylene.
    Ghomsheh MZ; Khatibi G
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614482
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of creep and creep-recovery on ratcheting strain of articular cartilage under cyclic compression.
    Gao L; Liu D; Gao H; Lv L; Zhang C
    Mater Sci Eng C Mater Biol Appl; 2019 Jan; 94():988-997. PubMed ID: 30423787
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhanced Mechanical Properties of Metallic Glass Thin Films via Modification of Structural Heterogeneity.
    Ma X; Sun K; Li P; Zhang N; Wang Q; Wang G
    Materials (Basel); 2021 Feb; 14(4):. PubMed ID: 33672573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Nanoindentation to Characterize the Mechanical and Creep Properties of Shale: Load and Loading Strain Rate Effects.
    Wang J; Yang C; Liu Y; Li Y; Xiong Y
    ACS Omega; 2022 Apr; 7(16):14317-14331. PubMed ID: 35573216
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation.
    Maharaj D; Bhushan B
    Beilstein J Nanotechnol; 2014; 5():822-36. PubMed ID: 24991519
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rate-dependent serrated flow and plastic deformation in Ti
    Kumar Misra D; Woo Sohn S; Tae Kim W; Hyang Kim D
    Sci Technol Adv Mater; 2008 Dec; 9(4):045004. PubMed ID: 27878032
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of Sample Preparation on Nanoindentation Behavior of a Zr-Based Bulk Metallic Glass.
    Huang H; Zhao H; Zhang Z; Yang Z; Ma Z
    Materials (Basel); 2012 Jun; 5(6):1033-1039. PubMed ID: 28817022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test.
    Chuang SF; Lin SY; Wei PJ; Han CF; Lin JF; Chang HC
    J Biomech; 2015 Jul; 48(10):2155-61. PubMed ID: 25911251
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter.
    Bei H; Lu ZP; George EP
    Phys Rev Lett; 2004 Sep; 93(12):125504. PubMed ID: 15447277
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Poroelastic response of articular cartilage by nanoindentation creep tests at different characteristic lengths.
    Taffetani M; Gottardi R; Gastaldi D; Raiteri R; Vena P
    Med Eng Phys; 2014 Jul; 36(7):850-8. PubMed ID: 24814573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.