These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31805701)

  • 1. Influence of Long-Term Storage on Shape Memory Performance and Mechanical Behavior of Pre-stretched Commercial Poly(methyl methacrylate) (PMMA).
    Wang C; Dai Y; Kou B; Huang WM
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31805701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigation of Shape Memory Polyurethane Properties in Cold Programming Process Towards Its Applications.
    Staszczak M; Urbański L; Cristea M; Ionita D; Pieczyska EA
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical and Experimental Investigation of Shape Memory Polymers Programmed below Glass Transition Temperature.
    Shahi K; Ramachandran V
    Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808797
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nucleation, Development and Healing of Micro-Cracks in Shape Memory Polyurethane Subjected to Subsequent Tension Cycles.
    Staszczak M; Urbański L; Gradys A; Cristea M; Pieczyska EA
    Polymers (Basel); 2024 Jul; 16(13):. PubMed ID: 39000785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Polyurethane Shape Memory Polymer and Determination of Shape Fixity and Shape Recovery in Subsequent Thermomechanical Cycles.
    Staszczak M; Nabavian Kalat M; Golasiński KM; Urbański L; Takeda K; Matsui R; Pieczyska EA
    Polymers (Basel); 2022 Nov; 14(21):. PubMed ID: 36365780
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On-Demand Tailoring between Brittle and Ductile of Poly(methyl methacrylate) (PMMA) via High Temperature Stretching.
    Wang C; Pek JX; Chen HM; Huang WM
    Polymers (Basel); 2022 Feb; 14(5):. PubMed ID: 35267810
    [No Abstract]   [Full Text] [Related]  

  • 7. Omnidirectional Shape Memory Effect via Lyophilization of PEG Hydrogels.
    Chen D; Xia X; Wong TW; Bai H; Behl M; Zhao Q; Lendlein A; Xie T
    Macromol Rapid Commun; 2017 Apr; 38(7):. PubMed ID: 28196300
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermally Activated Composite with Two-Way and Multi-Shape Memory Effects.
    Basit A; L'Hostis G; Pac MJ; Durand B
    Materials (Basel); 2013 Sep; 6(9):4031-4045. PubMed ID: 28788316
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-Material 3D Printed Shape Memory Polymer with Tunable Melting and Glass Transition Temperature Activated by Heat or Light.
    Sachyani Keneth E; Lieberman R; Rednor M; Scalet G; Auricchio F; Magdassi S
    Polymers (Basel); 2020 Mar; 12(3):. PubMed ID: 32210051
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shape-memory effect by specific biodegradable polymer blending for biomedical applications.
    Cha KJ; Lih E; Choi J; Joung YK; Ahn DJ; Han DK
    Macromol Biosci; 2014 May; 14(5):667-78. PubMed ID: 24446274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-driven temperature memory and multiple shape memory effects.
    Xiao R; Guo J; Safranski DL; Nguyen TD
    Soft Matter; 2015 May; 11(20):3977-85. PubMed ID: 25890998
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstrating the Influence of Physical Aging on the Functional Properties of Shape-Memory Polymers.
    Ghobadi E; Elsayed M; Krause-Rehberg R; Steeb H
    Polymers (Basel); 2018 Jan; 10(2):. PubMed ID: 30966144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An annulus fibrosus closure device based on a biodegradable shape-memory polymer network.
    Sharifi S; van Kooten TG; Kranenburg HJ; Meij BP; Behl M; Lendlein A; Grijpma DW
    Biomaterials; 2013 Nov; 34(33):8105-13. PubMed ID: 23932501
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cyclic behaviors of amorphous shape memory polymers.
    Yu K; Li H; McClung AJ; Tandon GP; Baur JW; Qi HJ
    Soft Matter; 2016 Apr; 12(13):3234-45. PubMed ID: 26924339
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stretchable degradable and electroactive shape memory copolymers with tunable recovery temperature enhance myogenic differentiation.
    Deng Z; Guo Y; Zhao X; Li L; Dong R; Guo B; Ma PX
    Acta Biomater; 2016 Dec; 46():234-244. PubMed ID: 27640917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Reduced time as a unified parameter determining fixity and free recovery of shape memory polymers.
    Yu K; Ge Q; Qi HJ
    Nat Commun; 2014; 5():3066. PubMed ID: 24423789
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Shape Memory Composites Based on Electrospun Poly(vinyl alcohol) Fibers and a Thermoplastic Polyether Block Amide Elastomer.
    Shirole A; Sapkota J; Foster EJ; Weder C
    ACS Appl Mater Interfaces; 2016 Mar; 8(10):6701-8. PubMed ID: 26900879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermoresponsive semicrystalline poly(ε-caprolactone) networks: exploiting cross-linking with cinnamoyl moieties to design polymers with tunable shape memory.
    Garle A; Kong S; Ojha U; Budhlall BM
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):645-57. PubMed ID: 22252722
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-Dimensional Printing of Shape Memory Composites with Epoxy-Acrylate Hybrid Photopolymer.
    Yu R; Yang X; Zhang Y; Zhao X; Wu X; Zhao T; Zhao Y; Huang W
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1820-1829. PubMed ID: 28009155
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of Crystallization on Shape Memory Effect of Poly(lactic Acid).
    Nie D; Yin X; Cai Z; Wang J
    Polymers (Basel); 2022 Apr; 14(8):. PubMed ID: 35458321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.