These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 31806243)

  • 1. Predicting structural class for protein sequences of 40% identity based on features of primary and secondary structure using Random Forest algorithm.
    Apurva M; Mazumdar H
    Comput Biol Chem; 2020 Feb; 84():107164. PubMed ID: 31806243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating secondary structural features into sequence information for predicting protein structural class.
    Liao B; Peng T; Chen H; Lin Y
    Protein Pept Lett; 2013 Oct; 20(10):1079-87. PubMed ID: 23688152
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced Protein Structural Class Prediction Using Effective Feature Modeling and Ensemble of Classifiers.
    Bankapur S; Patil N
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2409-2419. PubMed ID: 32149653
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A high-accuracy protein structural class prediction algorithm using predicted secondary structural information.
    Liu T; Jia C
    J Theor Biol; 2010 Dec; 267(3):272-5. PubMed ID: 20831876
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accurate prediction of protein structural classes by incorporating predicted secondary structure information into the general form of Chou's pseudo amino acid composition.
    Kong L; Zhang L; Lv J
    J Theor Biol; 2014 Mar; 344():12-8. PubMed ID: 24316044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of protein structural classes for low-homology sequences based on predicted secondary structure.
    Yang JY; Peng ZL; Chen X
    BMC Bioinformatics; 2010 Jan; 11 Suppl 1(Suppl 1):S9. PubMed ID: 20122246
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel Multi-Agent Ada-Boost algorithm for predicting protein structural class with the information of protein secondary structure.
    Fan M; Zheng B; Li L
    J Bioinform Comput Biol; 2015 Oct; 13(5):1550022. PubMed ID: 26350693
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural protein fold recognition based on secondary structure and evolutionary information using machine learning algorithms.
    Qin X; Liu M; Zhang L; Liu G
    Comput Biol Chem; 2021 Apr; 91():107456. PubMed ID: 33610129
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A two-stage approach towards protein secondary structure classification.
    Ghosh KK; Ghosh S; Sen S; Sarkar R; Maulik U
    Med Biol Eng Comput; 2020 Aug; 58(8):1723-1737. PubMed ID: 32472446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-accuracy prediction of protein structural class for low-similarity sequences based on predicted secondary structure.
    Zhang S; Ding S; Wang T
    Biochimie; 2011 Apr; 93(4):710-4. PubMed ID: 21237245
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids.
    Mohammad TA; Nagarajaram HA
    J Bioinform Comput Biol; 2011 Aug; 9(4):489-502. PubMed ID: 21776605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modular prediction of protein structural classes from sequences of twilight-zone identity with predicting sequences.
    Mizianty MJ; Kurgan L
    BMC Bioinformatics; 2009 Dec; 10():414. PubMed ID: 20003388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of protein structural class using novel evolutionary collocation-based sequence representation.
    Chen K; Kurgan LA; Ruan J
    J Comput Chem; 2008 Jul; 29(10):1596-604. PubMed ID: 18293306
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural class prediction of protein using novel feature extraction method from chaos game representation of predicted secondary structure.
    Zhang L; Kong L; Han X; Lv J
    J Theor Biol; 2016 Jul; 400():1-10. PubMed ID: 27084358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automatic structure classification of small proteins using random forest.
    Jain P; Hirst JD
    BMC Bioinformatics; 2010 Jul; 11():364. PubMed ID: 20594334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition.
    Melvin I; Ie E; Kuang R; Weston J; Stafford WN; Leslie C
    BMC Bioinformatics; 2007 May; 8 Suppl 4(Suppl 4):S2. PubMed ID: 17570145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supervised machine learning algorithms for protein structure classification.
    Jain P; Garibaldi JM; Hirst JD
    Comput Biol Chem; 2009 Jun; 33(3):216-23. PubMed ID: 19473879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel structure-driven features for accurate prediction of protein structural class.
    Kong L; Zhang L
    Genomics; 2014 Apr; 103(4):292-7. PubMed ID: 24747329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PFRES: protein fold classification by using evolutionary information and predicted secondary structure.
    Chen K; Kurgan L
    Bioinformatics; 2007 Nov; 23(21):2843-50. PubMed ID: 17942446
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.