These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31806261)

  • 1. A feasibility study of deep learning for predicting hemodynamics of human thoracic aorta.
    Liang L; Mao W; Sun W
    J Biomech; 2020 Jan; 99():109544. PubMed ID: 31806261
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning approach to estimate stress distribution: a fast and accurate surrogate of finite-element analysis.
    Liang L; Liu M; Martin C; Sun W
    J R Soc Interface; 2018 Jan; 15(138):. PubMed ID: 29367242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on aortic hemodynamics based on physics-informed neural network.
    Du M; Zhang C; Xie S; Pu F; Zhang D; Li D
    Math Biosci Eng; 2023 May; 20(7):11545-11567. PubMed ID: 37501408
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of an Experimental and Digital Cardiovascular Arterial Model for Transient Hemodynamic and Postural Change Studies: "A Preliminary Framework Analysis".
    Hewlin RL; Kizito JP
    Cardiovasc Eng Technol; 2018 Mar; 9(1):1-31. PubMed ID: 29124548
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of Numerical Simulations of Thoracic Aorta Hemodynamics: Comparison with In Vivo Measurements and Stochastic Sensitivity Analysis.
    Boccadifuoco A; Mariotti A; Capellini K; Celi S; Salvetti MV
    Cardiovasc Eng Technol; 2018 Dec; 9(4):688-706. PubMed ID: 30357714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deep Learning Based Centerline-Aggregated Aortic Hemodynamics: An Efficient Alternative to Numerical Modeling of Hemodynamics.
    Yevtushenko P; Goubergrits L; Gundelwein L; Setio A; Ramm H; Lamecker H; Heimann T; Meyer A; Kuehne T; Schafstedde M
    IEEE J Biomed Health Inform; 2022 Apr; 26(4):1815-1825. PubMed ID: 34591773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neonatal aortic arch hemodynamics and perfusion during cardiopulmonary bypass.
    Pekkan K; Dur O; Sundareswaran K; Kanter K; Fogel M; Yoganathan A; Undar A
    J Biomech Eng; 2008 Dec; 130(6):061012. PubMed ID: 19045541
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel formulation for the study of the ascending aortic fluid dynamics with in vivo data.
    Capellini K; Gasparotti E; Cella U; Costa E; Fanni BM; Groth C; Porziani S; Biancolini ME; Celi S
    Med Eng Phys; 2021 May; 91():68-78. PubMed ID: 33008714
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shape-driven deep neural networks for fast acquisition of aortic 3D pressure and velocity flow fields.
    Pajaziti E; Montalt-Tordera J; Capelli C; Sivera R; Sauvage E; Quail M; Schievano S; Muthurangu V
    PLoS Comput Biol; 2023 Apr; 19(4):e1011055. PubMed ID: 37093855
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D MR flow analysis in realistic rapid-prototyping model systems of the thoracic aorta: comparison with in vivo data and computational fluid dynamics in identical vessel geometries.
    Canstein C; Cachot P; Faust A; Stalder AF; Bock J; Frydrychowicz A; Küffer J; Hennig J; Markl M
    Magn Reson Med; 2008 Mar; 59(3):535-46. PubMed ID: 18306406
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamics in diabetic human aorta using computational fluid dynamics.
    Shin E; Kim JJ; Lee S; Ko KS; Rhee BD; Han J; Kim N
    PLoS One; 2018; 13(8):e0202671. PubMed ID: 30138473
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aortic hemodynamics after thoracic endovascular aortic repair, with particular attention to the bird-beak configuration.
    van Bogerijen GH; Auricchio F; Conti M; Lefieux A; Reali A; Veneziani A; Tolenaar JL; Moll FL; Rampoldi V; Trimarchi S
    J Endovasc Ther; 2014 Dec; 21(6):791-802. PubMed ID: 25453880
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Automatic segmentation of the great arteries for computational hemodynamic assessment.
    Montalt-Tordera J; Pajaziti E; Jones R; Sauvage E; Puranik R; Singh AAV; Capelli C; Steeden J; Schievano S; Muthurangu V
    J Cardiovasc Magn Reson; 2022 Nov; 24(1):57. PubMed ID: 36336682
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hemodynamic study of blood flow in the aorta during the interventional robot treatment using fluid-structure interaction.
    Zhu Z; Ji S; Liang L; Wang H; Xia H; Tang P
    Biomech Model Mechanobiol; 2023 Dec; 22(6):1857-1872. PubMed ID: 37329426
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A machine learning approach as a surrogate of finite element analysis-based inverse method to estimate the zero-pressure geometry of human thoracic aorta.
    Liang L; Liu M; Martin C; Sun W
    Int J Numer Method Biomed Eng; 2018 May; ():e3103. PubMed ID: 29740974
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Application of computational fluid dynamics in hemodynamic research of aortic arch].
    Zhang T; Xiong J; Hu XZ; Jia X; Luan SL; Guo W
    Zhonghua Yi Xue Za Zhi; 2013 Jan; 93(5):380-4. PubMed ID: 23660214
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distributed lumped parameter model of blood flow with fluid-structure interaction.
    Pewowaruk R; Roldán-Alzate A
    Biomech Model Mechanobiol; 2021 Oct; 20(5):1659-1674. PubMed ID: 34076757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synergistic Integration of Deep Neural Networks and Finite Element Method with Applications of Nonlinear Large Deformation Biomechanics.
    Liang L; Liu M; Elefteriades J; Sun W
    Comput Methods Appl Mech Eng; 2023 Nov; 416():. PubMed ID: 38370344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Uncertainty propagation of phase contrast-MRI derived inlet boundary conditions in computational hemodynamics models of thoracic aorta.
    Bozzi S; Morbiducci U; Gallo D; Ponzini R; Rizzo G; Bignardi C; Passoni G
    Comput Methods Biomech Biomed Engin; 2017 Aug; 20(10):1104-1112. PubMed ID: 28553722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physics-informed neural networks (PINNs) for 4D hemodynamics prediction: An investigation of optimal framework based on vascular morphology.
    Zhang X; Mao B; Che Y; Kang J; Luo M; Qiao A; Liu Y; Anzai H; Ohta M; Guo Y; Li G
    Comput Biol Med; 2023 Sep; 164():107287. PubMed ID: 37536096
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.