These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 31806288)

  • 1. Understanding effect of interaction of nanoparticles and antibiotics on bacteria survival under aquatic conditions: Knowns and unknowns.
    Tyagi N; Kumar A
    Environ Res; 2020 Feb; 181():108945. PubMed ID: 31806288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimating combined health risks of nanomaterials and antibiotics from natural water: a proposed framework.
    Kumari M; Kumar A
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):13845-13856. PubMed ID: 34596816
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of daylight on the fate of silver and zinc oxide nanoparticles in natural aquatic environments.
    Odzak N; Kistler D; Sigg L
    Environ Pollut; 2017 Jul; 226():1-11. PubMed ID: 28395184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manufactured nanoparticles: an overview of their chemistry, interactions and potential environmental implications.
    Ju-Nam Y; Lead JR
    Sci Total Environ; 2008 Aug; 400(1-3):396-414. PubMed ID: 18715626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Behavior and Potential Impacts of Metal-Based Engineered Nanoparticles in Aquatic Environments.
    Peng C; Zhang W; Gao H; Li Y; Tong X; Li K; Zhu X; Wang Y; Chen Y
    Nanomaterials (Basel); 2017 Jan; 7(1):. PubMed ID: 28336855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Understanding effect of solution chemistry on heteroaggregation of zinc oxide and copper oxide nanoparticles.
    Parsai T; Kumar A
    Chemosphere; 2019 Nov; 235():457-469. PubMed ID: 31272006
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples.
    Zhang L; Li J; Yang K; Liu J; Lin D
    Environ Pollut; 2016 Apr; 211():132-40. PubMed ID: 26745398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of pH and natural organic matter (NOM) on the adsorptive removal of CuO nanoparticles by periphyton.
    Miao L; Wang C; Hou J; Wang P; Ao Y; Dai S; Lv B
    Environ Sci Pollut Res Int; 2015 May; 22(10):7696-704. PubMed ID: 25510615
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Toxicity of Nanoparticles to Organisms in Freshwater.
    Lekamge S; Ball AS; Shukla R; Nugegoda D
    Rev Environ Contam Toxicol; 2020; 248():1-80. PubMed ID: 30413977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ability of the marine bacterium Pseudomonas fluorescens BA3SM1 to counteract the toxicity of CdSe nanoparticles.
    Poirier I; Kuhn L; Demortière A; Mirvaux B; Hammann P; Chicher J; Caplat C; Pallud M; Bertrand M
    J Proteomics; 2016 Oct; 148():213-27. PubMed ID: 27523480
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Potential impacts of silver nanoparticles on bacteria in the aquatic environment.
    Sheng Z; Liu Y
    J Environ Manage; 2017 Apr; 191():290-296. PubMed ID: 28129561
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization.
    Ma S; Lin D
    Environ Sci Process Impacts; 2013 Jan; 15(1):145-60. PubMed ID: 24592433
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toxicity of mixtures of zinc oxide and graphene oxide nanoparticles to aquatic organisms of different trophic level: particles outperform dissolved ions.
    Ye N; Wang Z; Wang S; Peijnenburg WJGM
    Nanotoxicology; 2018 Jun; 12(5):423-438. PubMed ID: 29658385
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of pH and ionic strength in the aggregation of TiO
    Lin D; Story SD; Walker SL; Huang Q; Liang W; Cai P
    Environ Pollut; 2017 Sep; 228():35-42. PubMed ID: 28511037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fate of engineered cerium oxide nanoparticles in an aquatic environment and their toxicity toward 14 ciliated protist species.
    Zhang W; Pu Z; Du S; Chen Y; Jiang L
    Environ Pollut; 2016 May; 212():584-591. PubMed ID: 26986089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation and bioavailability of metal oxide nanoparticles in aquatic and terrestrial environments. A review.
    Amde M; Liu JF; Tan ZQ; Bekana D
    Environ Pollut; 2017 Nov; 230():250-267. PubMed ID: 28662490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Particle size distributions of silver nanoparticles at environmentally relevant conditions.
    Cumberland SA; Lead JR
    J Chromatogr A; 2009 Dec; 1216(52):9099-105. PubMed ID: 19647834
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Heteroaggregation of engineered nanoparticles and kaolin clays in aqueous environments.
    Wang H; Dong YN; Zhu M; Li X; Keller AA; Wang T; Li F
    Water Res; 2015 Sep; 80():130-8. PubMed ID: 26001279
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?
    Zou X; Shi J; Zhang H
    Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transformation of CuO Nanoparticles in the Aquatic Environment: Influence of pH, Electrolytes and Natural Organic Matter.
    Peng C; Shen C; Zheng S; Yang W; Hu H; Liu J; Shi J
    Nanomaterials (Basel); 2017 Oct; 7(10):. PubMed ID: 29036921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.