These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 31806311)

  • 1. Cometabolic biotransformation of 1,4-dioxane in mixtures with hexavalent chromium using attached and planktonic bacteria.
    Johnson NW; Gedalanga PB; Zhao L; Gu B; Mahendra S
    Sci Total Environ; 2020 Mar; 706():135734. PubMed ID: 31806311
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Abiotic and bioaugmented granular activated carbon for the treatment of 1,4-dioxane-contaminated water.
    Myers MA; Johnson NW; Marin EZ; Pornwongthong P; Liu Y; Gedalanga PB; Mahendra S
    Environ Pollut; 2018 Sep; 240():916-924. PubMed ID: 29879691
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advances in bioremediation of 1,4-dioxane-contaminated waters.
    Zhang S; Gedalanga PB; Mahendra S
    J Environ Manage; 2017 Dec; 204(Pt 2):765-774. PubMed ID: 28625566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradation of 1,4-dioxane: effects of enzyme inducers and trichloroethylene.
    Hand S; Wang B; Chu KH
    Sci Total Environ; 2015 Jul; 520():154-9. PubMed ID: 25813968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-contaminant effects on 1,4-dioxane biodegradation in packed soil column flow-through systems.
    Zhao L; Lu X; Polasko A; Johnson NW; Miao Y; Yang Z; Mahendra S; Gu B
    Environ Pollut; 2018 Dec; 243(Pt A):573-581. PubMed ID: 30216889
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of Cr(VI) reduction and Cr(III) immobilization mechanism by planktonic cells and biofilms of Bacillus subtilis ATCC-6633.
    Pan X; Liu Z; Chen Z; Cheng Y; Pan D; Shao J; Lin Z; Guan X
    Water Res; 2014 May; 55():21-9. PubMed ID: 24583840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biofilm formation and extracellular polymeric substance (EPS) production by Bacillus haynesii and influence of hexavalent chromium.
    Maurya A; Kumar R; Yadav P; Singh A; Yadav A; Chowdhary P; Raj A
    Bioresour Technol; 2022 May; 352():127109. PubMed ID: 35378281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hexavalent Chromium Sources and Distribution in California Groundwater.
    Hausladen DM; Alexander-Ozinskas A; McClain C; Fendorf S
    Environ Sci Technol; 2018 Aug; 52(15):8242-8251. PubMed ID: 29949365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolation of hexavalent chromium-reducing anaerobes from hexavalent-chromium-contaminated and noncontaminated environments.
    Turick CE; Apel WA; Carmiol NS
    Appl Microbiol Biotechnol; 1996 Jan; 44(5):683-8. PubMed ID: 8703437
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biodegradation Kinetics of 1,4-Dioxane in Chlorinated Solvent Mixtures.
    Zhang S; Gedalanga PB; Mahendra S
    Environ Sci Technol; 2016 Sep; 50(17):9599-607. PubMed ID: 27486928
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient removal of hexavalent chromium by a tolerant Streptomyces sp. affected by the toxic effect of metal exposure.
    Morales DK; Ocampo W; Zambrano MM
    J Appl Microbiol; 2007 Dec; 103(6):2704-12. PubMed ID: 18045449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The impact of chlorinated solvent co-contaminants on the biodegradation kinetics of 1,4-dioxane.
    Mahendra S; Grostern A; Alvarez-Cohen L
    Chemosphere; 2013 Mar; 91(1):88-92. PubMed ID: 23237300
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transition metals and organic ligands influence biodegradation of 1,4-dioxane.
    Pornwongthong P; Mulchandani A; Gedalanga PB; Mahendra S
    Appl Biochem Biotechnol; 2014 May; 173(1):291-306. PubMed ID: 24627120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Potential for cometabolic biodegradation of 1,4-dioxane in aquifers with methane or ethane as primary substrates.
    Hatzinger PB; Banerjee R; Rezes R; Streger SH; McClay K; Schaefer CE
    Biodegradation; 2017 Dec; 28(5-6):453-468. PubMed ID: 29022194
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic pathway of Cr(VI) reduction by bacteria: A review.
    Ramli NN; Othman AR; Kurniawan SB; Abdullah SRS; Hasan HA
    Microbiol Res; 2023 Mar; 268():127288. PubMed ID: 36571921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of extracellular polymeric substances in the immobilization of hexavalent chromium by Shewanella putrefaciens CN32 unsaturated biofilms.
    An H; Tian T; Wang Z; Jin R; Zhou J
    Sci Total Environ; 2022 Mar; 810():151184. PubMed ID: 34699809
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of in situ biodegradation of 1,4-dioxane under metabolic and cometabolic conditions.
    Barajas-Rodriguez FJ; Murdoch LC; Falta RW; Freedman DL
    J Contam Hydrol; 2019 Jun; 223():103464. PubMed ID: 30910507
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disentangling Microbial Syntrophic Mechanisms for Hexavalent Chromium Reduction in Autotrophic Biosystems.
    Zhang B; Liu J; Sheng Y; Shi J; Dong H
    Environ Sci Technol; 2021 May; 55(9):6340-6351. PubMed ID: 33866784
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Occurrence and distribution of hexavalent chromium in groundwater from North Carolina, USA.
    Coyte RM; McKinley KL; Jiang S; Karr J; Dwyer GS; Keyworth AJ; Davis CC; Kondash AJ; Vengosh A
    Sci Total Environ; 2020 Apr; 711():135135. PubMed ID: 32000345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hexavalent chromium reduction by bacteria from tannery effluent.
    Batool R; Yrjala K; Hasnain S
    J Microbiol Biotechnol; 2012 Apr; 22(4):547-54. PubMed ID: 22534304
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.