These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 31806332)

  • 1. Numerical approach for water distribution system model calibration through incorporation of multiple stochastic prior distributions.
    Chu S; Zhang T; Shao Y; Yu T; Yao H
    Sci Total Environ; 2020 Mar; 708():134565. PubMed ID: 31806332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Real-Time Water Distribution System Hydraulic Modeling Using Prior Demand Information by Formal Bayesian Approach.
    Shao Y; Chu S; Zhang T; Yang YJ; Yu T
    J Water Resour Plan Manag; 2019; 145(12):. PubMed ID: 33623182
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Maintaining the long-term accuracy of water distribution models with data assimilation methods: A comparative study.
    Zhou X; Guo S; Xin K; Xu W; Tao T; Yan H
    Water Res; 2022 Nov; 226():119268. PubMed ID: 36302270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A noise adaptive approach for nodal water demand estimation in water distribution systems.
    Chu S; Zhang T; Yu T; Wang QJ; Shao Y
    Water Res; 2021 Mar; 192():116837. PubMed ID: 33485266
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Greedy Sampling Design Algorithm for the Modal Calibration of Nodal Demand in Water Distribution Systems.
    Shao Y; Chu S; Zhang T; Yang YJ; Yu T
    Environ Model Softw; 2019 Feb; 2019():1-3917571. PubMed ID: 32831618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A convenient and stable graph-based pressure estimation methodology for water distribution networks: Development and field validation.
    Zhou X; Zhang J; Guo S; Liu S; Xin K
    Water Res; 2023 Apr; 233():119747. PubMed ID: 36841165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Risk- and robustness-based solutions to a multi-objective water distribution system rehabilitation problem under uncertainty .
    Kapelan Z; Savic DA; Walters GA; Babayan AV
    Water Sci Technol; 2006; 53(1):61-75. PubMed ID: 16532736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a Bayesian approach to stochastic delineation of capture zones.
    Feyen L; Dessalegn AM; De Smedt F; Gebremeskel S; Batelaan O
    Ground Water; 2004; 42(4):542-51. PubMed ID: 15318777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Calibration of parameter fields consisting of multiple statistical populations.
    Janssen GM; Valstar JR
    Ground Water; 2010; 48(1):92-105. PubMed ID: 19664048
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bayesian calibration of process-based forest models: bridging the gap between models and data.
    Van Oijen M; Rougier J; Smith R
    Tree Physiol; 2005 Jul; 25(7):915-27. PubMed ID: 15870058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient multi-objective optimization method for water quality sensor placement within water distribution systems considering contamination probability variations.
    He G; Zhang T; Zheng F; Zhang Q
    Water Res; 2018 Oct; 143():165-175. PubMed ID: 29945032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A full-spectral Bayesian reconstruction approach based on the material decomposition model applied in dual-energy computed tomography.
    Cai C; Rodet T; Legoupil S; Mohammad-Djafari A
    Med Phys; 2013 Nov; 40(11):111916. PubMed ID: 24320449
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bridging hydraulics and graph signal processing: A new perspective to estimate water distribution network pressures.
    Zhou X; Liu S; Xu W; Xin K; Wu Y; Meng F
    Water Res; 2022 Jun; 217():118416. PubMed ID: 35429881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Joint propagation of variability and imprecision in assessing the risk of groundwater contamination.
    Baudrit C; Guyonnet D; Dubois D
    J Contam Hydrol; 2007 Aug; 93(1-4):72-84. PubMed ID: 17321003
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Method for optimal sensor placement in water distribution systems with nodal demand uncertainties].
    Liu SM; Wu X; Ouyang LY
    Huan Jing Ke Xue; 2013 Aug; 34(8):3108-12. PubMed ID: 24191555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Demand-Driven Spatiotemporal Variations of Flow Hydraulics and Water Age by Comparative Modeling Analysis of Distribution Network.
    Zhao Y; Yang YJ; Shao Y; Lee Y; Zhang T
    J Water Resour Plan Manag; 2018; 144(12):. PubMed ID: 31666759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-Series-Based Leakage Detection Using Multiple Pressure Sensors in Water Distribution Systems.
    Shao Y; Li X; Zhang T; Chu S; Liu X
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31336795
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bayesian approach for quantifying the uncertainty of neutron doses derived from spectrometric measurements.
    Reginatto M
    Radiat Prot Dosimetry; 2006; 121(1):64-9. PubMed ID: 16877470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ground water model calibration using pilot points and regularization.
    Doherty J
    Ground Water; 2003; 41(2):170-7. PubMed ID: 12656283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Incorporating prior knowledge induced from stochastic differential equations in the classification of stochastic observations.
    Zollanvari A; Dougherty ER
    EURASIP J Bioinform Syst Biol; 2016 Dec; 2016(1):2. PubMed ID: 26834782
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.