These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 31806544)
1. Thermodynamic of collapsing cavitation bubble investigated by pseudopotential and thermal MRT-LBM. Yang Y; Shan M; Kan X; Shangguan Y; Han Q Ultrason Sonochem; 2020 Apr; 62():104873. PubMed ID: 31806544 [TBL] [Abstract][Full Text] [Related]
2. Thermodynamic effects of gas adiabatic index on cavitation bubble collapse. Yang Y; Shan M; Kan X; Duan K; Han Q; Juan Y Heliyon; 2023 Oct; 9(10):e20532. PubMed ID: 37876463 [TBL] [Abstract][Full Text] [Related]
3. Simulation of collapsing cavitation bubbles in various liquids by lattice Boltzmann model coupled with the Redlich-Kwong-Soave equation of state. Ezzatneshan E; Vaseghnia H Phys Rev E; 2020 Nov; 102(5-1):053309. PubMed ID: 33327092 [TBL] [Abstract][Full Text] [Related]
4. Interpreting the influence of liquid temperature on cavitation collapse intensity through bubble dynamic analysis. Peng K; Qin FGF; Jiang R; Kang S Ultrason Sonochem; 2020 Dec; 69():105253. PubMed ID: 32731127 [TBL] [Abstract][Full Text] [Related]
5. Study on the spatial distribution of the liquid temperature near a cavitation bubble wall. Shen Y; Yasui K; Sun Z; Mei B; You M; Zhu T Ultrason Sonochem; 2016 Mar; 29():394-400. PubMed ID: 26585020 [TBL] [Abstract][Full Text] [Related]
6. Wall wettability effect on process of collapse of single cavitation bubbles in near-wall region using pseudo-potential lattice Boltzmann method. Yang Q; He X; Peng H; Zhang J Heliyon; 2022 Dec; 8(12):e12636. PubMed ID: 36619430 [TBL] [Abstract][Full Text] [Related]
7. Interactions between a cavitation bubble and solidification front under the effects of ultrasound: Experiments and lattice Boltzmann modeling. Chen Y; Zhang Q; Wang X; Yao Z Ultrason Sonochem; 2022 Dec; 91():106221. PubMed ID: 36395625 [TBL] [Abstract][Full Text] [Related]
8. Collapsing dynamics of a laser-induced cavitation bubble near the edge of a rigid wall. Zhang Y; Qiu X; Zhang X; Tang N; Zhang Y Ultrason Sonochem; 2020 Oct; 67():105157. PubMed ID: 32388314 [TBL] [Abstract][Full Text] [Related]
9. An equivalent method of jet impact loading from collapsing near-wall acoustic bubbles: A preliminary study. Lu X; Chen C; Dong K; Li Z; Chen J Ultrason Sonochem; 2021 Nov; 79():105760. PubMed ID: 34653916 [TBL] [Abstract][Full Text] [Related]
10. On the thermodynamic behaviors and interactions between bubble pairs: A numerical approach. Yin J; Zhang Y; Zhu J; Zhang Y; Li S Ultrason Sonochem; 2021 Jan; 70():105297. PubMed ID: 32750657 [TBL] [Abstract][Full Text] [Related]
12. Numerical investigation on acoustic cavitation characteristics of an air-vapor bubble: Effect of equation of state for interior gases. Qin D; Lei S; Chen B; Li Z; Wang W; Ji X Ultrason Sonochem; 2023 Jul; 97():106456. PubMed ID: 37271030 [TBL] [Abstract][Full Text] [Related]
13. Research on the collapse characteristics of single cavitation bubble near solid particle by the VOF method. Lyu F; Zhang X; Yuan H; Han S; Tang M Heliyon; 2023 Nov; 9(11):e21855. PubMed ID: 38045155 [TBL] [Abstract][Full Text] [Related]
14. Multirelaxation-time interaction-potential-based lattice Boltzmann model for two-phase flow. Yu Z; Fan LS Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 2):046708. PubMed ID: 21230413 [TBL] [Abstract][Full Text] [Related]
15. Numerical study on dual-frequency ultrasonic enhancing cavitation effect based on bubble dynamic evolution. Ye L; Zhu X; Liu Y Ultrason Sonochem; 2019 Dec; 59():104744. PubMed ID: 31473426 [TBL] [Abstract][Full Text] [Related]
16. Thermodynamic effect of single bubble near a rigid wall. Yu Q; Ma X; Xu Z; Zhao J; Wang D; Huang Z Ultrason Sonochem; 2021 Mar; 71():105396. PubMed ID: 33340927 [TBL] [Abstract][Full Text] [Related]
17. Numerical investigation on the collapse of a bubble cluster near a solid wall. Zhang L; Zhang J; Deng J Phys Rev E; 2019 Apr; 99(4-1):043108. PubMed ID: 31108661 [TBL] [Abstract][Full Text] [Related]
18. The Gilmore-NASG model to predict single-bubble cavitation in compressible liquids. Denner F Ultrason Sonochem; 2021 Jan; 70():105307. PubMed ID: 32866881 [TBL] [Abstract][Full Text] [Related]
19. Numerical modelling of acoustic cavitation threshold in water with non-condensable bubble nuclei. Hong S; Son G Ultrason Sonochem; 2022 Feb; 83():105932. PubMed ID: 35121570 [TBL] [Abstract][Full Text] [Related]
20. Modeling thermal inkjet and cell printing process using modified pseudopotential and thermal lattice Boltzmann methods. Sohrabi S; Liu Y Phys Rev E; 2018 Mar; 97(3-1):033105. PubMed ID: 29776028 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]