These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31806547)

  • 1. Comparison of two different ultrasound reactors for the treatment of cellulose fibers.
    Pamidi TRK; Johansson Ö; Löfqvist T; Shankar V
    Ultrason Sonochem; 2020 Apr; 62():104841. PubMed ID: 31806547
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of Weissler method for scale-up a Kraft pulp oxidation by TEMPO-mediated system from a batch mode to a continuous flow-through sonoreactor.
    Paquin M; Loranger É; Hannaux V; Chabot B; Daneault C
    Ultrason Sonochem; 2013 Jan; 20(1):103-8. PubMed ID: 22939000
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realization of cavitation fields based on the acoustic resonance modes in an immersion-type sonochemical reactor.
    Wang YC; Yao MC
    Ultrason Sonochem; 2013 Jan; 20(1):565-70. PubMed ID: 22959558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel rotation generator of hydrodynamic cavitation for the fibrillation of long conifer fibers in paper production.
    Kosel J; Šinkovec A; Dular M
    Ultrason Sonochem; 2019 Dec; 59():104721. PubMed ID: 31422236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extraction of tungsten from scheelite using hydrodynamic and acoustic cavitation.
    Johansson Ö; Pamidi T; Shankar V
    Ultrason Sonochem; 2021 Mar; 71():105408. PubMed ID: 33310454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cavitation Fibrillation of Cellulose Fiber.
    Redlinger-Pohn JD; Petkovšek M; Gordeyeva K; Zupanc M; Gordeeva A; Zhang Q; Dular M; Söderberg LD
    Biomacromolecules; 2022 Mar; 23(3):847-862. PubMed ID: 35099936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acousto-chemical analysis in multi-transducer sonochemical reactors for biodiesel production.
    Hussain MN; Janajreh I
    Ultrason Sonochem; 2018 Jan; 40(Pt A):184-193. PubMed ID: 28946413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Low-intensity ultrasound induced cavitation and streaming in oxygen-supersaturated water: Role of cavitation bubbles as physical cleaning agents.
    Yamashita T; Ando K
    Ultrason Sonochem; 2019 Apr; 52():268-279. PubMed ID: 30573434
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cavitation field analysis for an increased efficiency of ultrasonic sludge pre-treatment using a novel hydrophone system.
    Bandelin J; Lippert T; Drewes JE; Koch K
    Ultrason Sonochem; 2018 Apr; 42():672-678. PubMed ID: 29429716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrodynamic cavitation as a novel approach for delignification of wheat straw for paper manufacturing.
    Badve MP; Gogate PR; Pandit AB; Csoka L
    Ultrason Sonochem; 2014 Jan; 21(1):162-8. PubMed ID: 23968577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A computational modeling approach of the jet-like acoustic streaming and heat generation induced by low frequency high power ultrasonic horn reactors.
    Trujillo FJ; Knoerzer K
    Ultrason Sonochem; 2011 Nov; 18(6):1263-73. PubMed ID: 21616698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of hydrodynamic cavitation in the tissue erosion by pulsed high-intensity focused ultrasound (pHIFU).
    Zhou Y; Gao XW
    Phys Med Biol; 2016 Sep; 61(18):6651-6667. PubMed ID: 27541633
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biodiesel production process intensification using a rotor-stator type generator of hydrodynamic cavitation.
    Crudo D; Bosco V; Cavaglià G; Grillo G; Mantegna S; Cravotto G
    Ultrason Sonochem; 2016 Nov; 33():220-225. PubMed ID: 27245973
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cavitation erosion of ultrasonic sonotrode during large-scale metallic casting: Experiment and simulation.
    Tian Y; Liu Z; Li X; Zhang L; Li R; Jiang R; Dong F
    Ultrason Sonochem; 2018 May; 43():29-37. PubMed ID: 29555286
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of organic wastewater by hydrodynamic cavitation combined with acoustic cavitation.
    Yi C; Lu Q; Wang Y; Wang Y; Yang B
    Ultrason Sonochem; 2018 May; 43():156-165. PubMed ID: 29555271
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cavitation characteristics analysis of a novel rotor-radial groove hydrodynamic cavitation reactor.
    Song Y; Hou R; Liu Z; Liu J; Zhang W; Zhang L
    Ultrason Sonochem; 2022 May; 86():106028. PubMed ID: 35569441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enabling low power acoustics for capillary sonoreactors.
    Navarro-Brull FJ; Teixeira AR; Giri G; Gómez R
    Ultrason Sonochem; 2019 Sep; 56():105-113. PubMed ID: 31101244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining COMSOL modeling with acoustic pressure maps to design sono-reactors.
    Wei Z; Weavers LK
    Ultrason Sonochem; 2016 Jul; 31():490-8. PubMed ID: 26964976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification.
    Ge M; Sun C; Zhang G; Coutier-Delgosha O; Fan D
    Ultrason Sonochem; 2022 May; 86():106035. PubMed ID: 35580542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ultrasound pulse parameters on cavitation properties of flowing microbubbles under physiologically relevant conditions.
    Cheng M; Li F; Han T; Yu ACH; Qin P
    Ultrason Sonochem; 2019 Apr; 52():512-521. PubMed ID: 30642801
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.