These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
318 related articles for article (PubMed ID: 31806705)
21. Novel role of the Candida albicans ferric reductase gene CFL1 in iron acquisition, oxidative stress tolerance, morphogenesis and virulence. Xu N; Qian K; Dong Y; Chen Y; Yu Q; Zhang B; Xing L; Li M Res Microbiol; 2014 Apr; 165(3):252-61. PubMed ID: 24631590 [TBL] [Abstract][Full Text] [Related]
22. Superoxide dismutases are involved in Candida albicans biofilm persistence against miconazole. Bink A; Vandenbosch D; Coenye T; Nelis H; Cammue BP; Thevissen K Antimicrob Agents Chemother; 2011 Sep; 55(9):4033-7. PubMed ID: 21746956 [TBL] [Abstract][Full Text] [Related]
23. The oxidative stress response of the opportunistic fungal pathogen Candida glabrata. Briones-Martin-Del-Campo M; Orta-Zavalza E; Juarez-Cepeda J; Gutierrez-Escobedo G; Cañas-Villamar I; Castaño I; De Las Peñas A Rev Iberoam Micol; 2014; 31(1):67-71. PubMed ID: 24270068 [TBL] [Abstract][Full Text] [Related]
24. The Iron-Dependent Regulation of the Candida albicans Oxidative Stress Response by the CCAAT-Binding Factor. Chakravarti A; Camp K; McNabb DS; Pinto I PLoS One; 2017; 12(1):e0170649. PubMed ID: 28122000 [TBL] [Abstract][Full Text] [Related]
25. Cu,Zn superoxide dismutase structure from a microbial pathogen establishes a class with a conserved dimer interface. Forest KT; Langford PR; Kroll JS; Getzoff ED J Mol Biol; 2000 Feb; 296(1):145-53. PubMed ID: 10656823 [TBL] [Abstract][Full Text] [Related]
26. Role of Calprotectin in Withholding Zinc and Copper from Candida albicans. Besold AN; Gilston BA; Radin JN; Ramsoomair C; Culbertson EM; Li CX; Cormack BP; Chazin WJ; Kehl-Fie TE; Culotta VC Infect Immun; 2018 Feb; 86(2):. PubMed ID: 29133349 [TBL] [Abstract][Full Text] [Related]
27. Transcriptomic meta-analysis to identify potential antifungal targets in Candida albicans. Hefny ZA; Ji B; Elsemman IE; Nielsen J; Van Dijck P BMC Microbiol; 2024 Feb; 24(1):66. PubMed ID: 38413885 [TBL] [Abstract][Full Text] [Related]
28. Iron and copper as virulence modulators in human fungal pathogens. Ding C; Festa RA; Sun TS; Wang ZY Mol Microbiol; 2014 Jul; 93(1):10-23. PubMed ID: 24851950 [TBL] [Abstract][Full Text] [Related]
29. Genome-wide identification and characterization of superoxide dismutases in four oyster species reveals functional differentiation in response to biotic and abiotic stress. Liu Y; Bao Z; Lin Z; Xue Q BMC Genomics; 2022 May; 23(1):378. PubMed ID: 35585505 [TBL] [Abstract][Full Text] [Related]
30. Candida albicans expresses an unusual cytoplasmic manganese-containing superoxide dismutase (SOD3 gene product) upon the entry and during the stationary phase. Lamarre C; LeMay JD; Deslauriers N; Bourbonnais Y J Biol Chem; 2001 Nov; 276(47):43784-91. PubMed ID: 11562375 [TBL] [Abstract][Full Text] [Related]
31. Superoxide dismutases and glutaredoxins have a distinct role in the response of Candida albicans to oxidative stress generated by the chemical compounds menadione and diamide. Chaves GM; da Silva WP Mem Inst Oswaldo Cruz; 2012 Dec; 107(8):998-1005. PubMed ID: 23295749 [TBL] [Abstract][Full Text] [Related]
32. Cu,Zn superoxide dismutases from Tetrahymena thermophila: molecular evolution and gene expression of the first line of antioxidant defenses. Ferro D; Bakiu R; De Pittà C; Boldrin F; Cattalini F; Pucciarelli S; Miceli C; Santovito G Protist; 2015 Feb; 166(1):131-45. PubMed ID: 25681687 [TBL] [Abstract][Full Text] [Related]
33. The megavirus chilensis Cu,Zn-superoxide dismutase: the first viral structure of a typical cellular copper chaperone-independent hyperstable dimeric enzyme. Lartigue A; Burlat B; Coutard B; Chaspoul F; Claverie JM; Abergel C J Virol; 2015 Jan; 89(1):824-32. PubMed ID: 25355875 [TBL] [Abstract][Full Text] [Related]
34. Regulation of copper uptake by the SWI/SNF chromatin remodeling complex in Candida albicans affects susceptibility to antifungal and oxidative stresses under hypoxia. Khemiri I; Tebbji F; Burgain A; Sellam A FEMS Yeast Res; 2024 Jan; 24():. PubMed ID: 38760885 [TBL] [Abstract][Full Text] [Related]
35. Gain in functions of mutant Cu,Zn-superoxide dismutases as a causative factor in familial amyotrophic lateral sclerosis: less reactive oxidant formation but high spontaneous aggregation and precipitation. Okado-Matsumoto A; Myint T; Fujii J; Taniguchi N Free Radic Res; 2000 Jul; 33(1):65-73. PubMed ID: 10826922 [TBL] [Abstract][Full Text] [Related]
36. The Cu,Zn superoxide dismutases of Aspergillus flavus, Aspergillus niger, Aspergillus nidulans, and Aspergillus terreus: purification and biochemical comparison with the Aspergillus fumigatus Cu,Zn superoxide dismutase. Holdom MD; Hay RJ; Hamilton AJ Infect Immun; 1996 Aug; 64(8):3326-32. PubMed ID: 8757871 [TBL] [Abstract][Full Text] [Related]
37. Novel insight into the expression and function of the multicopper oxidases in Candida albicans. Cheng X; Xu N; Yu Q; Ding X; Qian K; Zhao Q; Wang Y; Zhang B; Xing L; Li M Microbiology (Reading); 2013 Jun; 159(Pt 6):1044-1055. PubMed ID: 23579686 [TBL] [Abstract][Full Text] [Related]
38. Superoxide dismutases: active sites that save, but a protein that kills. Miller AF Curr Opin Chem Biol; 2004 Apr; 8(2):162-8. PubMed ID: 15062777 [TBL] [Abstract][Full Text] [Related]
39. Regulation of superoxide dismutase synthesis in Candida albicans. Gunasekaran U; Yang R; Gunasekaran M Mycopathologia; 1998; 141(2):59-63. PubMed ID: 9750335 [TBL] [Abstract][Full Text] [Related]
40. Species-specific activation of Cu/Zn SOD by its CCS copper chaperone in the pathogenic yeast Candida albicans. Gleason JE; Li CX; Odeh HM; Culotta VC J Biol Inorg Chem; 2014 Jun; 19(4-5):595-603. PubMed ID: 24043471 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]