These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 31806916)

  • 1. A theory for the slip and drag of superhydrophobic surfaces with surfactant.
    Landel JR; Peaudecerf FJ; Temprano-Coleto F; Gibou F; Goldstein RE; Luzzatto-Fegiz P
    J Fluid Mech; 2020 Jan; 883():. PubMed ID: 31806916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single parameter can predict surfactant impairment of superhydrophobic drag reduction.
    Temprano-Coleto F; Smith SM; Peaudecerf FJ; Landel JR; Gibou F; Luzzatto-Fegiz P
    Proc Natl Acad Sci U S A; 2023 Jan; 120(3):e2211092120. PubMed ID: 36634141
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Traces of surfactants can severely limit the drag reduction of superhydrophobic surfaces.
    Peaudecerf FJ; Landel JR; Goldstein RE; Luzzatto-Fegiz P
    Proc Natl Acad Sci U S A; 2017 Jul; 114(28):7254-7259. PubMed ID: 28655848
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinspired surfaces for turbulent drag reduction.
    Golovin KB; Gose JW; Perlin M; Ceccio SL; Tuteja A
    Philos Trans A Math Phys Eng Sci; 2016 Aug; 374(2073):. PubMed ID: 27354731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fractal Model for Drag Reduction on Multiscale Nonwetting Rough Surfaces.
    Hatte S; Pitchumani R
    Langmuir; 2020 Dec; 36(47):14386-14402. PubMed ID: 33197195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime. II. Application to curved boundaries.
    Silva G
    Phys Rev E; 2018 Aug; 98(2-1):023302. PubMed ID: 30253480
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The coupling of surface charge and boundary slip at the solid-liquid interface and their combined effect on fluid drag: A review.
    Jing D; Bhushan B
    J Colloid Interface Sci; 2015 Sep; 454():152-79. PubMed ID: 26021432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sustained drag reduction in a turbulent flow using a low-temperature Leidenfrost surface.
    Saranadhi D; Chen D; Kleingartner JA; Srinivasan S; Cohen RE; McKinley GH
    Sci Adv; 2016 Oct; 2(10):e1600686. PubMed ID: 27757417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Numerical investigation of the effect of air layer on drag reduction in channel flow over a superhydrophobic surface.
    Nguyen HT; Lee SW; Ryu J; Kim M; Yoon J; Chang K
    Sci Rep; 2024 May; 14(1):12053. PubMed ID: 38802500
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Drag reduction on laser-patterned hierarchical superhydrophobic surfaces.
    Tanvir Ahmmed KM; Kietzig AM
    Soft Matter; 2016 Jun; 12(22):4912-22. PubMed ID: 27146256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A numerical investigation on the drainage of a surfactant-modified water droplet in paraffin oil.
    Lekhlifi A; Fanzar A; Antoni M
    Adv Colloid Interface Sci; 2015 Aug; 222():446-60. PubMed ID: 25772623
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Drag reduction on a patterned superhydrophobic surface.
    Truesdell R; Mammoli A; Vorobieff P; van Swol F; Brinker CJ
    Phys Rev Lett; 2006 Jul; 97(4):044504. PubMed ID: 16907578
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Boundary conditions at the liquid-liquid interface in the presence of surfactants.
    Hu Y; Zhang X; Wang W
    Langmuir; 2010 Jul; 26(13):10693-702. PubMed ID: 20507080
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Velocity amplification in pressure-driven flows between superhydrophobic gratings of small solid fraction.
    Yariv E
    Soft Matter; 2017 Sep; 13(37):6287-6292. PubMed ID: 28895611
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Consistent lattice Boltzmann modeling of low-speed isothermal flows at finite Knudsen numbers in slip-flow regime: Application to plane boundaries.
    Silva G; Semiao V
    Phys Rev E; 2017 Jul; 96(1-1):013311. PubMed ID: 29347253
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spectral Analysis of the Slip-Length Model for Turbulence over Textured Superhydrophobic Surfaces.
    Fairhall CT; GarcĂ­a-Mayoral R
    Flow Turbul Combust; 2018; 100(4):961-978. PubMed ID: 30069146
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids.
    Niavarani A; Priezjev NV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011606. PubMed ID: 20365383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal and External Flow over Laser-Textured Superhydrophobic Polytetrafluoroethylene (PTFE).
    Ahmmed KM; Patience C; Kietzig AM
    ACS Appl Mater Interfaces; 2016 Oct; 8(40):27411-27419. PubMed ID: 27649381
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surfactant-Influenced Gas-Liquid Interfaces: Nonlinear Equation of State and Finite Surface Viscosities.
    Lopez JM; Hirsa AH
    J Colloid Interface Sci; 2000 Sep; 229(2):575-583. PubMed ID: 10985838
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of particle-fluid density ratio on the interactions between the turbulent channel flow and finite-size particles.
    Yu Z; Lin Z; Shao X; Wang LP
    Phys Rev E; 2017 Sep; 96(3-1):033102. PubMed ID: 29346864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.