These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31807112)

  • 21. Targeted chronic myeloid leukemia therapy: seeking a cure.
    Fausel C
    J Manag Care Pharm; 2007 Oct; 13(8 Suppl A):8-12. PubMed ID: 17970609
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Imatinib discontinuation in chronic myeloid leukaemia patients with undetectable BCR-ABL transcript level: A systematic review and a meta-analysis.
    Campiotti L; Suter MB; Guasti L; Piazza R; Gambacorti-Passerini C; Grandi AM; Squizzato A
    Eur J Cancer; 2017 May; 77():48-56. PubMed ID: 28365527
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Leukemia Stem Cells in Chronic Myeloid Leukemia.
    Shan Y; DeSouza N; Qiu Q; Li S
    Adv Exp Med Biol; 2019; 1143():191-215. PubMed ID: 31338821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Role of anti-apoptotic pathways activated by BCR/ABL in the resistance of chronic myeloid leukemia cells to tyrosine kinase inhibitors.
    Danisz K; Blasiak J
    Acta Biochim Pol; 2013; 60(4):503-14. PubMed ID: 24273759
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Upregulation of the TGFbeta signalling pathway by Bcr-Abl: implications for haemopoietic cell growth and chronic myeloid leukaemia.
    Møller GM; Frost V; Melo JV; Chantry A
    FEBS Lett; 2007 Apr; 581(7):1329-34. PubMed ID: 17349636
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Targeting of the BLT2 in chronic myeloid leukemia inhibits leukemia stem/progenitor cell function.
    Xiao M; Ai H; Li T; Rajoria P; Shahu P; Li X
    Biochem Biophys Res Commun; 2016 Apr; 472(4):610-6. PubMed ID: 26966074
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanisms of resistance to BCR-ABL TKIs and the therapeutic strategies: A review.
    Yang K; Fu LW
    Crit Rev Oncol Hematol; 2015 Mar; 93(3):277-92. PubMed ID: 25500000
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Tyrosine kinase inhibitors in the therapy of chronic myeloid leukaemia].
    Grzybowska-Izydorczyk O; Góra-Tybor J; Robak T
    Postepy Hig Med Dosw (Online); 2006; 60():490-7. PubMed ID: 17013368
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sensitivity of imatinib-resistant T315I BCR-ABL CML to a synergistic combination of ponatinib and forskolin treatment.
    Oaxaca DM; Yang-Reid SA; Ross JA; Rodriguez G; Staniswalis JG; Kirken RA
    Tumour Biol; 2016 Sep; 37(9):12643-12654. PubMed ID: 27444277
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Chronic myeloid leukemia: 2020 update on diagnosis, therapy and monitoring.
    Jabbour E; Kantarjian H
    Am J Hematol; 2020 Jun; 95(6):691-709. PubMed ID: 32239758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [Tyrosine kinase inhibitors (TKI): a new revolution in the treatment of chronic myeloid leukemia (CML)].
    Avilés-Vázquez S; Chávez-González A; Mayani H
    Gac Med Mex; 2013; 149(6):646-54. PubMed ID: 24276188
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Chronic Myeloid Leukaemia: A paradigm for malignancy or just a strange disease?
    McCann SR
    Sultan Qaboos Univ Med J; 2012 Nov; 12(4):422-8. PubMed ID: 23275837
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Reactive oxygen species in BCR-ABL1-expressing cells - relevance to chronic myeloid leukemia.
    Antoszewska-Smith J; Pawlowska E; Blasiak J
    Acta Biochim Pol; 2017; 64(1):1-10. PubMed ID: 27904889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. BCR-ABL tyrosine kinase inhibitors in the treatment of Philadelphia chromosome positive chronic myeloid leukemia: a review.
    An X; Tiwari AK; Sun Y; Ding PR; Ashby CR; Chen ZS
    Leuk Res; 2010 Oct; 34(10):1255-68. PubMed ID: 20537386
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Targeting Hedgehog signaling pathway and autophagy overcomes drug resistance of BCR-ABL-positive chronic myeloid leukemia.
    Zeng X; Zhao H; Li Y; Fan J; Sun Y; Wang S; Wang Z; Song P; Ju D
    Autophagy; 2015; 11(2):355-72. PubMed ID: 25701353
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Clinical perspectives of concepts on neoplastic stem cells and stem cell-resistance in chronic myeloid leukemia.
    Valent P; Deininger M
    Leuk Lymphoma; 2008 Apr; 49(4):604-9. PubMed ID: 18398718
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Rho-ROCK pathway as a new pathological mechanism of innate immune subversion in chronic myeloid leukaemia.
    Basbous S; Levescot A; Piccirilli N; Brizard F; Guilhot F; Roy L; Bourmeyster N; Gombert JM; Herbelin A
    J Pathol; 2016 Nov; 240(3):262-268. PubMed ID: 27513300
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Autophagy and mitochondrial metabolism: insights into their role and therapeutic potential in chronic myeloid leukaemia.
    Baquero P; Dawson A; Helgason GV
    FEBS J; 2019 Apr; 286(7):1271-1283. PubMed ID: 30222247
    [TBL] [Abstract][Full Text] [Related]  

  • 39. New tyrosine kinase inhibitors in chronic myeloid leukemia.
    Martinelli G; Soverini S; Rosti G; Cilloni D; Baccarani M
    Haematologica; 2005 Apr; 90(4):534-41. PubMed ID: 15820950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chronic myelogenous leukemia: molecular and cellular aspects.
    Pasternak G; Hochhaus A; Schultheis B; Hehlmann R
    J Cancer Res Clin Oncol; 1998; 124(12):643-60. PubMed ID: 9879825
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.