These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 31807414)

  • 1. Dynamics of superparamagnetic nanoparticles in viscous liquids in rotating magnetic fields.
    Usov NA; Rytov RA; Bautin VA
    Beilstein J Nanotechnol; 2019; 10():2294-2303. PubMed ID: 31807414
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Properties of assembly of superparamagnetic nanoparticles in viscous liquid.
    Usov NA; Rytov RA; Bautin VA
    Sci Rep; 2021 Mar; 11(1):6999. PubMed ID: 33772074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specific absorption rate of randomly oriented magnetic nanoparticles in a static magnetic field.
    Rytov RA; Usov NA
    Beilstein J Nanotechnol; 2023; 14():485-493. PubMed ID: 37091289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Application of Magnetosomes in Magnetic Hyperthermia.
    Usov NA; Gubanova EM
    Nanomaterials (Basel); 2020 Jul; 10(7):. PubMed ID: 32635626
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heating ability of elongated magnetic nanoparticles.
    Gubanova EM; Usov NA; Oleinikov VA
    Beilstein J Nanotechnol; 2021; 12():1404-1412. PubMed ID: 35028264
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Simulating Magnetic Nanoparticle Behavior in Low-field MRI under Transverse Rotating Fields and Imposed Fluid Flow.
    Cantillon-Murphy P; Wald LL; Adalsteinsson E; Zahn M
    J Magn Magn Mater; 2010 Sep; 322(17):2607-2617. PubMed ID: 20625540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Magnetic Vortices as Efficient Nano Heaters in Magnetic Nanoparticle Hyperthermia.
    Usov NA; Nesmeyanov MS; Tarasov VP
    Sci Rep; 2018 Jan; 8(1):1224. PubMed ID: 29352175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction Effects in Assembly of Magnetic Nanoparticles.
    Usov NA; Serebryakova ON; Tarasov VP
    Nanoscale Res Lett; 2017 Aug; 12(1):489. PubMed ID: 28808986
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards optimal thermal distribution in magnetic hyperthermia.
    Rytov RA; Bautin VA; Usov NA
    Sci Rep; 2022 Feb; 12(1):3023. PubMed ID: 35194138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Equilibrium properties of assembly of interacting superparamagnetic nanoparticles.
    Usov NA; Serebryakova ON
    Sci Rep; 2020 Aug; 10(1):13677. PubMed ID: 32792603
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changing the magnetic properties of microstructure by directing the self-assembly of superparamagnetic nanoparticles.
    Ghosh S; Puri IK
    Faraday Discuss; 2015; 181():423-35. PubMed ID: 25941973
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulations of magnetic nanoparticle Brownian motion.
    Reeves DB; Weaver JB
    J Appl Phys; 2012 Dec; 112(12):124311. PubMed ID: 23319830
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles.
    Rácz J; de Châtel PF; Szabó IA; Szunyogh L; Nándori I
    Phys Rev E; 2016 Jan; 93(1):012607. PubMed ID: 26871122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of heat dissipation of superparamagnetic nanoparticles in alternating magnetic field on three human cancer cell lines in magnetic fluid hyperthermia.
    Attar MM; Haghpanahi M
    Electromagn Biol Med; 2016; 35(4):305-20. PubMed ID: 27015154
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Frequency-dependent conversion of the torque of a rotating magnetic field on a ferrofluid confined in a spherical cavity.
    Usadel KD; Storozhenko A; Arefyev I; Nádasi H; Trittel T; Stannarius R; Veit P; Eremin A
    Soft Matter; 2019 Nov; 15(44):9018-9030. PubMed ID: 31675052
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power losses in a suspension of magnetic dipoles under a rotating field.
    Raikher YL; Stepanov VI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Feb; 83(2 Pt 1):021401. PubMed ID: 21405843
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Magneto-mechanical destruction of cancer-associated fibroblasts using ultra-small iron oxide nanoparticles and low frequency rotating magnetic fields.
    Lopez S; Hallali N; Lalatonne Y; Hillion A; Antunes JC; Serhan N; Clerc P; Fourmy D; Motte L; Carrey J; Gigoux V
    Nanoscale Adv; 2022 Jan; 4(2):421-436. PubMed ID: 36132704
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superparamagnetic particle dynamics and mixing in a rotating capillary tube with a stationary magnetic field.
    Lee JT; Abid A; Cheung KH; Sudheendra L; Kennedy IM
    Microfluid Nanofluidics; 2012 Sep; 13(3):461-468. PubMed ID: 23066382
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Magnetic particle hyperthermia: Néel relaxation in magnetic nanoparticles under circularly polarized field.
    de Châtel PF; Nándori I; Hakl J; Mészáros S; Vad K
    J Phys Condens Matter; 2009 Mar; 21(12):124202. PubMed ID: 21817444
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Magnetic particle hyperthermia: power losses under circularly polarized field in anisotropic nanoparticles.
    Nándori I; Rácz J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Dec; 86(6 Pt 1):061404. PubMed ID: 23367947
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.