These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

402 related articles for article (PubMed ID: 31807887)

  • 21. Glyceryl trinitrate and caprylic acid for the mitigation of the Desulfovibrio vulgaris biofilm on C1018 carbon steel.
    Li Y; Zhang P; Cai W; Rosenblatt JS; Raad II; Xu D; Gu T
    World J Microbiol Biotechnol; 2016 Feb; 32(2):23. PubMed ID: 26745983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impact of Desulfovibrio alaskensis biofilms on corrosion behaviour of carbon steel in marine environment.
    Wikieł AJ; Datsenko I; Vera M; Sand W
    Bioelectrochemistry; 2014 Jun; 97():52-60. PubMed ID: 24238898
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental investigation of microbiologically influenced corrosion of selected steels in sugarcane juice environment.
    Wesley SB; Maurya DP; Goyal HS; Negi S
    World J Microbiol Biotechnol; 2013 Dec; 29(12):2353-7. PubMed ID: 23764955
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Investigation of mixed species biofilm on corrosion of X65 steel in seawater environment.
    Lv M; Du M; Li Z
    Bioelectrochemistry; 2022 Feb; 143():107951. PubMed ID: 34601262
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low efficiency of cathodic protection in marine tidal corrosion of X80 steel in the presence of Pseudomonas sp.
    Zhou X; Wang Q; Su H; Tan Z; Li C; Li Z; Wu T
    Bioelectrochemistry; 2024 Jun; 157():108656. PubMed ID: 38290303
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of Cu addition to AISI 8630 steel on the resistance to microbial corrosion.
    Liu Z; Cui T; Chen Y; Dong Z
    Bioelectrochemistry; 2023 Aug; 152():108412. PubMed ID: 36934621
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Biosurfactants: Eco-Friendly and Innovative Biocides against Biocorrosion.
    Płaza G; Achal V
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32245097
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accelerated biocorrosion of stainless steel in marine water via extracellular electron transfer encoding gene phzH of Pseudomonas aeruginosa.
    Zhou E; Zhang M; Huang Y; Li H; Wang J; Jiang G; Jiang C; Xu D; Wang Q; Wang F
    Water Res; 2022 Jul; 220():118634. PubMed ID: 35691192
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbially Influenced Corrosion of Steel in Marine Environments: A Review from Mechanisms to Prevention.
    Liu P; Zhang H; Fan Y; Xu D
    Microorganisms; 2023 Sep; 11(9):. PubMed ID: 37764143
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial Corrosion in Orthodontics.
    Gopalakrishnan U; Felicita S; Ronald B; Appavoo E; Patil S
    J Contemp Dent Pract; 2022 Jun; 23(6):569-571. PubMed ID: 36259293
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Neutrophilic iron-oxidizing "zetaproteobacteria" and mild steel corrosion in nearshore marine environments.
    McBeth JM; Little BJ; Ray RI; Farrar KM; Emerson D
    Appl Environ Microbiol; 2011 Feb; 77(4):1405-12. PubMed ID: 21131509
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mass spectrometric metabolomic imaging of biofilms on corroding steel surfaces using laser ablation and solvent capture by aspiration.
    Brauer JI; Makama Z; Bonifay V; Aydin E; Kaufman ED; Beech IB; Sunner J
    Biointerphases; 2015 Mar; 10(1):019003. PubMed ID: 25708633
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of crevice morphology on SRB activity and steel corrosion under marine foulers.
    Permeh S; Lau K; Duncan M
    Bioelectrochemistry; 2021 Dec; 142():107922. PubMed ID: 34392136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Accelerated corrosion of pipeline steel in the presence of Desulfovibrio desulfuricans biofilm due to carbon source deprivation in CO
    Eduok U; Ohaeri E; Szpunar J
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110095. PubMed ID: 31546354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A review of 'green' strategies to prevent or mitigate microbiologically influenced corrosion.
    Little B; Lee J; Ray R
    Biofouling; 2007; 23(1-2):87-97. PubMed ID: 17453733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Microbiologically influenced corrosion of 304 stainless steel by aerobic Pseudomonas NCIMB 2021 bacteria: AFM and XPS study.
    Yuan SJ; Pehkonen SO
    Colloids Surf B Biointerfaces; 2007 Sep; 59(1):87-99. PubMed ID: 17582747
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Peeking under the Iron Curtain: Development of a Microcosm for Imaging the Colonization of Steel Surfaces by Mariprofundus sp. Strain DIS-1, an Oxygen-Tolerant Fe-Oxidizing Bacterium.
    Mumford AC; Adaktylou IJ; Emerson D
    Appl Environ Microbiol; 2016 Nov; 82(22):6799-6807. PubMed ID: 27637877
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An overview of mechanisms by which sulphate-reducing bacteria influence corrosion of steel in marine environments.
    Videla HA
    Biofouling; 2000; 15(1-3):37-47. PubMed ID: 22115290
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The role of iron-oxidizing bacteria in biocorrosion: a review.
    Emerson D
    Biofouling; 2018 Oct; 34(9):989-1000. PubMed ID: 30642207
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial corrosion of metallic biomaterials in the oral environment.
    Xu W; Yu F; Addison O; Zhang B; Guan F; Zhang R; Hou B; Sand W
    Acta Biomater; 2024 Jun; ():. PubMed ID: 38942189
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.