These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 31808006)
21. Assessment of Five Chilling Tolerance Traits and GWAS Mapping in Rice Using the USDA Mini-Core Collection. Schläppi MR; Jackson AK; Eizenga GC; Wang A; Chu C; Shi Y; Shimoyama N; Boykin DL Front Plant Sci; 2017; 8():957. PubMed ID: 28642772 [TBL] [Abstract][Full Text] [Related]
22. In-Frame and Frame-Shift Editing of the Wu M; Liu H; Lin Y; Chen J; Fu Y; Luo J; Zhang Z; Liang K; Chen S; Wang F Front Plant Sci; 2020; 11():307. PubMed ID: 32265960 [No Abstract] [Full Text] [Related]
23. Analysis of Stress-Responsive Gene Expression in Cultivated and Weedy Rice Differing in Cold Stress Tolerance. Bevilacqua CB; Basu S; Pereira A; Tseng TM; Zimmer PD; Burgos NR PLoS One; 2015; 10(7):e0132100. PubMed ID: 26230579 [TBL] [Abstract][Full Text] [Related]
24. Phenotypic, physiological, and molecular evaluation of rice chilling stress response at the vegetative stage. de Los Reyes BG; Yun SJ; Herath V; Xu F; Park MR; Lee JI; Kim KY Methods Mol Biol; 2013; 956():227-41. PubMed ID: 23135855 [TBL] [Abstract][Full Text] [Related]
25. Physiological analysis reveals the mechanism of accelerated growth recovery for rice seedlings by nitrogen application after low temperature stress. Wang H; Zhong L; Fu X; Huang S; Zhao D; He H; Chen X Front Plant Sci; 2023; 14():1133592. PubMed ID: 36875613 [TBL] [Abstract][Full Text] [Related]
26. Phylogenetic origin and dispersal pattern of Taiwan weedy rice. Wu DH; Gealy DR; Jia MH; Edwards JD; Lai MH; McClung AM Pest Manag Sci; 2020 May; 76(5):1639-1651. PubMed ID: 31714668 [TBL] [Abstract][Full Text] [Related]
27. Cadmium in rice grains from a field trial in relation to model parameters of Cd-toxicity and -absorption in rice seedlings. Chiao WT; Syu CH; Chen BC; Juang KW Ecotoxicol Environ Saf; 2019 Mar; 169():837-847. PubMed ID: 30597783 [TBL] [Abstract][Full Text] [Related]
28. [CH4 emission features of leading super-rice varieties and their relationships with the varieties growth characteristics in Yangtze Delta of China]. Yan XJ; Wang LL; Jiang Y; Deng AX; Tian YL; Zhang WJ Ying Yong Sheng Tai Xue Bao; 2013 Sep; 24(9):2518-24. PubMed ID: 24417109 [TBL] [Abstract][Full Text] [Related]
29. Grain yield and quality performances of different late-season rice cultivars in response to experimental warming in subtropical China. Yang T; Tan X; Huang S; Pan X; Zeng Y; Zhang J; Cheng S; Zeng Y Front Plant Sci; 2023; 14():1136564. PubMed ID: 37255558 [TBL] [Abstract][Full Text] [Related]
30. Enhancing Yield and Improving Grain Quality in Japonica Rice: Targeted EHD1 Editing via CRISPR-Cas9 in Low-Latitude Adaptation. Song J; Tang L; Fan H; Xu X; Peng X; Cui Y; Wang J Curr Issues Mol Biol; 2024 Apr; 46(4):3741-3751. PubMed ID: 38666963 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of allelopathic potential and quantification of momilactone A,B from rice hull extracts and assessment of inhibitory bioactivity on paddy field weeds. Chung IM; Kim JT; Kim SH J Agric Food Chem; 2006 Apr; 54(7):2527-36. PubMed ID: 16569039 [TBL] [Abstract][Full Text] [Related]
33. Early seedling vigour, an imperative trait for direct-seeded rice: an overview on physio-morphological parameters and molecular markers. Mahender A; Anandan A; Pradhan SK Planta; 2015 May; 241(5):1027-50. PubMed ID: 25805338 [TBL] [Abstract][Full Text] [Related]
34. The Seedlings of Different Li YS; Ou SL; Yang CY Plants (Basel); 2020 Aug; 9(8):. PubMed ID: 32756426 [No Abstract] [Full Text] [Related]
35. Genetic Diversity and Population Structure of Rice Varieties Cultivated in Temperate Regions. Reig-Valiente JL; Viruel J; Sales E; Marqués L; Terol J; Gut M; Derdak S; Talón M; Domingo C Rice (N Y); 2016 Dec; 9(1):58. PubMed ID: 27766601 [TBL] [Abstract][Full Text] [Related]
36. Physiological Mechanisms Underlying the High-Grain Yield and High-Nitrogen Use Efficiency of Elite Rice Varieties under a Low Rate of Nitrogen Application in China. Wu L; Yuan S; Huang L; Sun F; Zhu G; Li G; Fahad S; Peng S; Wang F Front Plant Sci; 2016; 7():1024. PubMed ID: 27471511 [TBL] [Abstract][Full Text] [Related]
37. Genetic architecture of cold tolerance in rice (Oryza sativa) determined through high resolution genome-wide analysis. Shakiba E; Edwards JD; Jodari F; Duke SE; Baldo AM; Korniliev P; McCouch SR; Eizenga GC PLoS One; 2017; 12(3):e0172133. PubMed ID: 28282385 [TBL] [Abstract][Full Text] [Related]
38. The decrease in panicle number is the main reason for the yield reduction of japonica rice caused by 1,2,4-trichlorobenzene stress. Yan F; Zhang G; Liu L; Wang F; Zhao H; Huang Z; Niu Y Front Plant Sci; 2024; 15():1425945. PubMed ID: 39070908 [TBL] [Abstract][Full Text] [Related]
39. Rice OsHsp16.9A interacts with OsHsp101 to confer thermotolerance. Liu YH; Tseng TS; Wu CR; Cho ST; Kuo CH; Huang XJ; Cheng JY; Hsu KH; Lin KF; Liu CC; Yeh CH Plant Sci; 2023 May; 330():111634. PubMed ID: 36775071 [TBL] [Abstract][Full Text] [Related]
40. Methane emission from fields with differences in nitrogen fertilizers and rice varieties in Taiwan paddy soils. Liou RM; Huang SN; Lin CW Chemosphere; 2003 Jan; 50(2):237-46. PubMed ID: 12653295 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]