These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 31808485)

  • 1. Multiscale 3D-printing of microfluidic AFM cantilevers.
    Kramer RCLN; Verlinden EJ; Angeloni L; van den Heuvel A; Fratila-Apachitei LE; van der Maarel SM; Ghatkesar MK
    Lab Chip; 2020 Jan; 20(2):311-319. PubMed ID: 31808485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. 3D Printed Microfluidics.
    Nielsen AV; Beauchamp MJ; Nordin GP; Woolley AT
    Annu Rev Anal Chem (Palo Alto Calif); 2020 Jun; 13(1):45-65. PubMed ID: 31821017
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-Resin Masked Stereolithography (MSLA) 3D Printing for Rapid and Inexpensive Prototyping of Microfluidic Chips with Integrated Functional Components.
    Ahmed I; Sullivan K; Priye A
    Biosensors (Basel); 2022 Aug; 12(8):. PubMed ID: 36005047
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On-Demand 3D Printing of Nanowire Probes for High-Aspect-Ratio Atomic Force Microscopy Imaging.
    Lee H; Gan Z; Chen M; Min S; Yang J; Xu Z; Shao X; Lin Y; Li WD; Kim JT
    ACS Appl Mater Interfaces; 2020 Oct; 12(41):46571-46577. PubMed ID: 32924414
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation and comparison of resin materials in transparent DLP-printing for application in cell culture and organs-on-a-chip.
    Fritschen A; Bell AK; Königstein I; Stühn L; Stark RW; Blaeser A
    Biomater Sci; 2022 Apr; 10(8):1981-1994. PubMed ID: 35262097
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-resolution low-cost LCD 3D printing for microfluidics and organ-on-a-chip devices.
    Shafique H; Karamzadeh V; Kim G; Shen ML; Morocz Y; Sohrabi-Kashani A; Juncker D
    Lab Chip; 2024 May; 24(10):2774-2790. PubMed ID: 38682609
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Realization of 3D Printed AFM Probes.
    Alsharif N; Burkatovsky A; Lissandrello C; Jones KM; White AE; Brown KA
    Small; 2018 May; 14(19):e1800162. PubMed ID: 29603624
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Engineering 3D parallelized microfluidic droplet generators with equal flow profiles by computational fluid dynamics and stereolithographic printing.
    Kamperman T; Teixeira LM; Salehi SS; Kerckhofs G; Guyot Y; Geven M; Geris L; Grijpma D; Blanquer S; Leijten J
    Lab Chip; 2020 Feb; 20(3):490-495. PubMed ID: 31841123
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Batch fabrication of atomic force microscopy probes with recessed integrated ring microelectrodes at a wafer level.
    Shin H; Hesketh PJ; Mizaikoff B; Kranz C
    Anal Chem; 2007 Jul; 79(13):4769-77. PubMed ID: 17521168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and Development of a Three-Dimensionally Printed Microscope Mask Alignment Adapter for the Fabrication of Multilayer Microfluidic Devices.
    Garcia CR; Ding Z; Garza HC; Li W
    J Vis Exp; 2021 Jan; (167):. PubMed ID: 33554971
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vat photopolymerization 3D printed microfluidic devices for organ-on-a-chip applications.
    Milton LA; Viglione MS; Ong LJY; Nordin GP; Toh YC
    Lab Chip; 2023 Aug; 23(16):3537-3560. PubMed ID: 37476860
    [TBL] [Abstract][Full Text] [Related]  

  • 12. PolyJet 3D-Printed Enclosed Microfluidic Channels without Photocurable Supports.
    Castiaux AD; Pinger CW; Hayter EA; Bunn ME; Martin RS; Spence DM
    Anal Chem; 2019 May; 91(10):6910-6917. PubMed ID: 31035747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomic force microscope cantilever calibration using a focused ion beam.
    Slattery AD; Quinton JS; Gibson CT
    Nanotechnology; 2012 Jul; 23(28):285704. PubMed ID: 22728463
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell adhesion and proliferation on common 3D printing materials used in stereolithography of microfluidic devices.
    Piironen K; Haapala M; Talman V; Järvinen P; Sikanen T
    Lab Chip; 2020 Jun; 20(13):2372-2382. PubMed ID: 32500123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Planar AFM macro-probes to study the biomechanical properties of large cells and 3D cell spheroids.
    Andolfi L; Greco SLM; Tierno D; Chignola R; Martinelli M; Giolo E; Luppi S; Delfino I; Zanetti M; Battistella A; Baldini G; Ricci G; Lazzarino M
    Acta Biomater; 2019 Aug; 94():505-513. PubMed ID: 31154056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D printed microfluidics for biological applications.
    Ho CM; Ng SH; Li KH; Yoon YJ
    Lab Chip; 2015; 15(18):3627-37. PubMed ID: 26237523
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication routes via projection stereolithography for 3D-printing of microfluidic geometries for nucleic acid amplification.
    Tzivelekis C; Sgardelis P; Waldron K; Whalley R; Huo D; Dalgarno K
    PLoS One; 2020; 15(10):e0240237. PubMed ID: 33112867
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips.
    Kotz F; Helmer D; Rapp BE
    Adv Biochem Eng Biotechnol; 2022; 179():37-66. PubMed ID: 32797271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of Poisson's ratio variation on lateral spring constant of atomic force microscopy cantilevers.
    Yeh MK; Tai NH; Chen BY
    Ultramicroscopy; 2008 Sep; 108(10):1025-9. PubMed ID: 18547729
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Accurate and precise calibration of AFM cantilever spring constants using laser Doppler vibrometry.
    Gates RS; Pratt JR
    Nanotechnology; 2012 Sep; 23(37):375702. PubMed ID: 22922668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.