These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31808680)

  • 1. Pectin-GPTMS-Based Biomaterial: toward a Sustainable Bioprinting of 3D scaffolds for Tissue Engineering Application.
    Lapomarda A; De Acutis A; Chiesa I; Fortunato GM; Montemurro F; De Maria C; Mattioli Belmonte M; Gottardi R; Vozzi G
    Biomacromolecules; 2020 Feb; 21(2):319-327. PubMed ID: 31808680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physicochemical Characterization of Pectin-Gelatin Biomaterial Formulations for 3D Bioprinting.
    Lapomarda A; Cerqueni G; Geven MA; Chiesa I; De Acutis A; De Blasi M; Montemurro F; De Maria C; Mattioli-Belmonte M; Vozzi G
    Macromol Biosci; 2021 Sep; 21(9):e2100168. PubMed ID: 34173326
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pectin as Rheology Modifier of a Gelatin-Based Biomaterial Ink.
    Lapomarda A; Pulidori E; Cerqueni G; Chiesa I; De Blasi M; Geven MA; Montemurro F; Duce C; Mattioli-Belmonte M; Tiné MR; Vozzi G; De Maria C
    Materials (Basel); 2021 Jun; 14(11):. PubMed ID: 34198912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D-printing-assisted fabrication of chitosan scaffolds from different sources and cross-linkers for dental tissue engineering.
    EzEldeen M; Loos J; Mousavi Nejad Z; Cristaldi M; Murgia D; Braem A; Jacobs R
    Eur Cell Mater; 2021 May; 41():485-501. PubMed ID: 33948929
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model.
    Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G
    Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable fabrication of hydroxybutyl chitosan/oxidized chondroitin sulfate hydrogels by 3D bioprinting technique for cartilage tissue engineering.
    Li C; Wang K; Zhou X; Li T; Xu Y; Qiang L; Peng M; Xu Y; Xie L; He C; Wang B; Wang J
    Biomed Mater; 2019 Jan; 14(2):025006. PubMed ID: 30557856
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual crosslinking silk fibroin/pectin-based bioink development and the application on neural stem/progenitor cells spheroid laden 3D bioprinting.
    Lee HW; Chen KT; Li YE; Yeh YC; Chiang CY; Lee IC
    Int J Biol Macromol; 2024 Jun; 269(Pt 2):131720. PubMed ID: 38677692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting.
    Giuseppe MD; Law N; Webb B; A Macrae R; Liew LJ; Sercombe TB; Dilley RJ; Doyle BJ
    J Mech Behav Biomed Mater; 2018 Mar; 79():150-157. PubMed ID: 29304429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication and characterization of pectin-based three-dimensional porous scaffolds suitable for treatment of peritoneal adhesions.
    Kulikouskaya V; Kraskouski A; Hileuskaya K; Zhura A; Tratsyak S; Agabekov V
    J Biomed Mater Res A; 2019 Aug; 107(8):1814-1823. PubMed ID: 31008569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Silk-Reinforced Collagen Hydrogels with Raised Multiscale Stiffness for Mesenchymal Cells 3D Culture.
    Sanz-Fraile H; Amoros S; Mendizabal I; Galvez-Monton C; Prat-Vidal C; Bayes-Genis A; Navajas D; Farre R; Otero J
    Tissue Eng Part A; 2020 Mar; 26(5-6):358-370. PubMed ID: 32085691
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of gelatin scaffolds crosslinked by genipin and silane coupling agent.
    Tonda-Turo C; Gentile P; Saracino S; Chiono V; Nandagiri VK; Muzio G; Canuto RA; Ciardelli G
    Int J Biol Macromol; 2011 Nov; 49(4):700-6. PubMed ID: 21767562
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure and in vitro cellular response to novel soy protein-based porous structures for tissue regeneration applications.
    Olami H; Zilberman M
    J Biomater Appl; 2016 Feb; 30(7):1004-15. PubMed ID: 26526932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinspired Processing: Complex Coacervates as Versatile Inks for 3D Bioprinting.
    Khoonkari M; Es Sayed J; Oggioni M; Amirsadeghi A; Dijkstra P; Parisi D; Kruyt F; van Rijn P; Włodarczyk-Biegun MK; Kamperman M
    Adv Mater; 2023 Jul; 35(28):e2210769. PubMed ID: 36916861
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Marine-derived natural polymer-based bioprinting ink for biocompatible, durable, and controllable 3D constructs.
    Park TY; Yang YJ; Ha DH; Cho DW; Cha HJ
    Biofabrication; 2019 Apr; 11(3):035001. PubMed ID: 30831562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterisation of hyaluronic acid methylcellulose hydrogels for 3D bioprinting.
    Law N; Doney B; Glover H; Qin Y; Aman ZM; Sercombe TB; Liew LJ; Dilley RJ; Doyle BJ
    J Mech Behav Biomed Mater; 2018 Jan; 77():389-399. PubMed ID: 29017117
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 3D bioprinting mesenchymal stem cell-laden construct with core-shell nanospheres for cartilage tissue engineering.
    Zhu W; Cui H; Boualam B; Masood F; Flynn E; Rao RD; Zhang ZY; Zhang LG
    Nanotechnology; 2018 May; 29(18):185101. PubMed ID: 29446757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytocompatibility testing of hydrogels toward bioprinting of mesenchymal stem cells.
    Benning L; Gutzweiler L; Tröndle K; Riba J; Zengerle R; Koltay P; Zimmermann S; Stark GB; Finkenzeller G
    J Biomed Mater Res A; 2017 Dec; 105(12):3231-3241. PubMed ID: 28782179
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proposal to assess printability of bioinks for extrusion-based bioprinting and evaluation of rheological properties governing bioprintability.
    Paxton N; Smolan W; Böck T; Melchels F; Groll J; Jungst T
    Biofabrication; 2017 Nov; 9(4):044107. PubMed ID: 28930091
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.