These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 31808773)

  • 1. Cross-sectional focusing of red blood cells in a constricted microfluidic channel.
    Abay A; Recktenwald SM; John T; Kaestner L; Wagner C
    Soft Matter; 2020 Jan; 16(2):534-543. PubMed ID: 31808773
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Red blood cells flows in rectilinear microfluidic chip.
    Anandan P; Ortiz D; Intaglietta M; Cabrales PJ; Bucolo M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3225-8. PubMed ID: 26736979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Out-of-plane integration of a multimode optical fiber for single particle/cell detection at multiple points on a microfluidic device with applications to particle/cell counting, velocimetry, size discrimination and the analysis of single cell lysate injections.
    Sadeghi J; Patabadige DE; Culbertson AH; Latifi H; Culbertson CT
    Lab Chip; 2016 Dec; 17(1):145-155. PubMed ID: 27909706
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Behavior of rigid and deformable particles in deterministic lateral displacement devices with different post shapes.
    Zhang Z; Henry E; Gompper G; Fedosov DA
    J Chem Phys; 2015 Dec; 143(24):243145. PubMed ID: 26723630
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Focusing and alignment of erythrocytes in a viscoelastic medium.
    Go T; Byeon H; Lee SJ
    Sci Rep; 2017 Jan; 7():41162. PubMed ID: 28117428
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Applications of machine learning for simulations of red blood cells in microfluidic devices.
    Bachratý H; Bachratá K; Chovanec M; Jančigová I; Smiešková M; Kovalčíková K
    BMC Bioinformatics; 2020 Mar; 21(Suppl 2):90. PubMed ID: 32164547
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Focused electrophoretic motion and selected electrokinetic dispensing of particles and cells in cross-microchannels.
    Xuan X; Li D
    Electrophoresis; 2005 Sep; 26(18):3552-60. PubMed ID: 16110466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Throughput Particle Concentration Using Complex Cross-Section Microchannels.
    Mihandoust A; Razavi Bazaz S; Maleki-Jirsaraei N; Alizadeh M; A Taylor R; Ebrahimi Warkiani M
    Micromachines (Basel); 2020 Apr; 11(4):. PubMed ID: 32331275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Correction: Cross-sectional focusing of red blood cells in a constricted microfluidic channel.
    Abay A; Recktenwald SM; John T; Kaestner L; Wagner C
    Soft Matter; 2020 Feb; 16(7):1941. PubMed ID: 32039425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices.
    Xiang N; Ni Z
    Biomed Microdevices; 2015 Dec; 17(6):110. PubMed ID: 26553099
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro measurement of particle margination in the microchannel flow: effect of varying hematocrit.
    Fitzgibbon S; Spann AP; Qi QM; Shaqfeh ESG
    Biophys J; 2015 May; 108(10):2601-2608. PubMed ID: 25992738
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle focusing mechanisms in curving confined flows.
    Gossett DR; Di Carlo D
    Anal Chem; 2009 Oct; 81(20):8459-65. PubMed ID: 19761190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Three-dimensional focusing of red blood cells in microchannel flows for bio-sensing applications.
    Kim YW; Yoo JY
    Biosens Bioelectron; 2009 Aug; 24(12):3677-82. PubMed ID: 19559591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Geometrical focusing of cells in a microfluidic device: an approach to separate blood plasma.
    Faivre M; Abkarian M; Bickraj K; Stone HA
    Biorheology; 2006; 43(2):147-59. PubMed ID: 16687784
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monitoring erythrocytes in a microchip channel that narrows uniformly: towards an improved microfluidic-based mimic of the microcirculation.
    Price AK; Martin RS; Spence DM
    J Chromatogr A; 2006 Apr; 1111(2):220-7. PubMed ID: 16569581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. "From the Edge to the Center": Viscoelastic Migration of Particles and Cells in a Strongly Shear-Thinning Liquid Flowing in a Microchannel.
    Del Giudice F; Sathish S; D'Avino G; Shen AQ
    Anal Chem; 2017 Dec; 89(24):13146-13159. PubMed ID: 29083161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry.
    Kim S; Oh J; Cha C
    Colloids Surf B Biointerfaces; 2016 Nov; 147():1-8. PubMed ID: 27478957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inertial microfluidics: A method for fast prediction of focusing pattern of particles in the cross section of the channel.
    Mashhadian A; Shamloo A
    Anal Chim Acta; 2019 Nov; 1083():137-149. PubMed ID: 31493804
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flow structures and red blood cell dynamics in arteriole of dilated or constricted cross section.
    Gambaruto AM
    J Biomech; 2016 Jul; 49(11):2229-2240. PubMed ID: 26822224
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid multivortex mixing in an alternately formed contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    Biomed Microdevices; 2010 Dec; 12(6):1019-26. PubMed ID: 20635204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.