These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Order-disorder transition during shear thickening in bidisperse dense suspensions. Fu X; Liu Y; Lu J; Sun R J Colloid Interface Sci; 2024 May; 662():1044-1051. PubMed ID: 38387366 [TBL] [Abstract][Full Text] [Related]
7. A general constitutive model for dense, fine-particle suspensions validated in many geometries. Baumgarten AS; Kamrin K Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20828-20836. PubMed ID: 31562198 [TBL] [Abstract][Full Text] [Related]
8. Microscopic Origin of Frictional Rheology in Dense Suspensions: Correlations in Force Space. Thomas JE; Ramola K; Singh A; Mari R; Morris JF; Chakraborty B Phys Rev Lett; 2018 Sep; 121(12):128002. PubMed ID: 30296153 [TBL] [Abstract][Full Text] [Related]
9. Nonmonotonic flow curves of shear thickening suspensions. Mari R; Seto R; Morris JF; Denn MM Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052302. PubMed ID: 26066172 [TBL] [Abstract][Full Text] [Related]
10. Revealing the frictional transition in shear-thickening suspensions. Clavaud C; Bérut A; Metzger B; Forterre Y Proc Natl Acad Sci U S A; 2017 May; 114(20):5147-5152. PubMed ID: 28465437 [TBL] [Abstract][Full Text] [Related]
11. Microscopic mechanism for shear thickening of non-Brownian suspensions. Fernandez N; Mani R; Rinaldi D; Kadau D; Mosquet M; Lombois-Burger H; Cayer-Barrioz J; Herrmann HJ; Spencer ND; Isa L Phys Rev Lett; 2013 Sep; 111(10):108301. PubMed ID: 25166716 [TBL] [Abstract][Full Text] [Related]
12. Shear Thickening and Jamming of Dense Suspensions: The "Roll" of Friction. Singh A; Ness C; Seto R; de Pablo JJ; Jaeger HM Phys Rev Lett; 2020 Jun; 124(24):248005. PubMed ID: 32639825 [TBL] [Abstract][Full Text] [Related]
13. Dynamic Vorticity Banding in Discontinuously Shear Thickening Suspensions. Chacko RN; Mari R; Cates ME; Fielding SM Phys Rev Lett; 2018 Sep; 121(10):108003. PubMed ID: 30240258 [TBL] [Abstract][Full Text] [Related]
14. First-principles constitutive equation for suspension rheology. Brader JM; Cates ME; Fuchs M Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021403. PubMed ID: 23005759 [TBL] [Abstract][Full Text] [Related]
15. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media. Antony SJ; Kruyt NP Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031308. PubMed ID: 19391936 [TBL] [Abstract][Full Text] [Related]
16. Discontinuous shear thickening in Brownian suspensions by dynamic simulation. Mari R; Seto R; Morris JF; Denn MM Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15326-30. PubMed ID: 26621744 [TBL] [Abstract][Full Text] [Related]
17. Two-scale evolution during shear reversal in dense suspensions. Ness C; Sun J Phys Rev E; 2016 Jan; 93(1):012604. PubMed ID: 26871119 [TBL] [Abstract][Full Text] [Related]
18. Normal stresses in shear thickening granular suspensions. Pan Z; de Cagny H; Habibi M; Bonn D Soft Matter; 2017 May; 13(20):3734-3740. PubMed ID: 28463377 [TBL] [Abstract][Full Text] [Related]
19. Direct observation of dynamic shear jamming in dense suspensions. Peters IR; Majumdar S; Jaeger HM Nature; 2016 Apr; 532(7598):214-7. PubMed ID: 27042934 [TBL] [Abstract][Full Text] [Related]