These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 31809141)

  • 1. Constitutive Model for Time-Dependent Flows of Shear-Thickening Suspensions.
    Gillissen JJJ; Ness C; Peterson JD; Wilson HJ; Cates ME
    Phys Rev Lett; 2019 Nov; 123(21):214504. PubMed ID: 31809141
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transition from steady shear to oscillatory shear rheology of dense suspensions.
    Dong J; Trulsson M
    Phys Rev E; 2020 Nov; 102(5-1):052605. PubMed ID: 33327063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shear thickening behavior in dense repulsive and attractive suspensions of hard spheres.
    Rathee V; Monti A; Rosti ME; Shen AQ
    Soft Matter; 2021 Sep; 17(35):8047-8058. PubMed ID: 34525164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From Yielding to Shear Jamming in a Cohesive Frictional Suspension.
    Singh A; Pednekar S; Chun J; Denn MM; Morris JF
    Phys Rev Lett; 2019 Mar; 122(9):098004. PubMed ID: 30932528
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shear thickening regimes of dense non-Brownian suspensions.
    Ness C; Sun J
    Soft Matter; 2016 Jan; 12(3):914-24. PubMed ID: 26555249
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Order-disorder transition during shear thickening in bidisperse dense suspensions.
    Fu X; Liu Y; Lu J; Sun R
    J Colloid Interface Sci; 2024 May; 662():1044-1051. PubMed ID: 38387366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general constitutive model for dense, fine-particle suspensions validated in many geometries.
    Baumgarten AS; Kamrin K
    Proc Natl Acad Sci U S A; 2019 Oct; 116(42):20828-20836. PubMed ID: 31562198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic Origin of Frictional Rheology in Dense Suspensions: Correlations in Force Space.
    Thomas JE; Ramola K; Singh A; Mari R; Morris JF; Chakraborty B
    Phys Rev Lett; 2018 Sep; 121(12):128002. PubMed ID: 30296153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonmonotonic flow curves of shear thickening suspensions.
    Mari R; Seto R; Morris JF; Denn MM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052302. PubMed ID: 26066172
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Revealing the frictional transition in shear-thickening suspensions.
    Clavaud C; Bérut A; Metzger B; Forterre Y
    Proc Natl Acad Sci U S A; 2017 May; 114(20):5147-5152. PubMed ID: 28465437
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic mechanism for shear thickening of non-Brownian suspensions.
    Fernandez N; Mani R; Rinaldi D; Kadau D; Mosquet M; Lombois-Burger H; Cayer-Barrioz J; Herrmann HJ; Spencer ND; Isa L
    Phys Rev Lett; 2013 Sep; 111(10):108301. PubMed ID: 25166716
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shear Thickening and Jamming of Dense Suspensions: The "Roll" of Friction.
    Singh A; Ness C; Seto R; de Pablo JJ; Jaeger HM
    Phys Rev Lett; 2020 Jun; 124(24):248005. PubMed ID: 32639825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic Vorticity Banding in Discontinuously Shear Thickening Suspensions.
    Chacko RN; Mari R; Cates ME; Fielding SM
    Phys Rev Lett; 2018 Sep; 121(10):108003. PubMed ID: 30240258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. First-principles constitutive equation for suspension rheology.
    Brader JM; Cates ME; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021403. PubMed ID: 23005759
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of interparticle friction and particle-scale elasticity in the shear-strength mechanism of three-dimensional granular media.
    Antony SJ; Kruyt NP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031308. PubMed ID: 19391936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discontinuous shear thickening in Brownian suspensions by dynamic simulation.
    Mari R; Seto R; Morris JF; Denn MM
    Proc Natl Acad Sci U S A; 2015 Dec; 112(50):15326-30. PubMed ID: 26621744
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-scale evolution during shear reversal in dense suspensions.
    Ness C; Sun J
    Phys Rev E; 2016 Jan; 93(1):012604. PubMed ID: 26871119
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Normal stresses in shear thickening granular suspensions.
    Pan Z; de Cagny H; Habibi M; Bonn D
    Soft Matter; 2017 May; 13(20):3734-3740. PubMed ID: 28463377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of dynamic shear jamming in dense suspensions.
    Peters IR; Majumdar S; Jaeger HM
    Nature; 2016 Apr; 532(7598):214-7. PubMed ID: 27042934
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-principles constitutive equation for suspension rheology.
    Brader JM; Cates ME; Fuchs M
    Phys Rev Lett; 2008 Sep; 101(13):138301. PubMed ID: 18851498
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.