BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 31809194)

  • 1. A Type IV-A CRISPR-Cas System in
    Crowley VM; Catching A; Taylor HN; Borges AL; Metcalf J; Bondy-Denomy J; Jackson RN
    CRISPR J; 2019 Dec; 2(6):434-440. PubMed ID: 31809194
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization and Repurposing of Type I and Type II CRISPR-Cas Systems in Bacteria.
    Hidalgo-Cantabrana C; Goh YJ; Barrangou R
    J Mol Biol; 2019 Jan; 431(1):21-33. PubMed ID: 30261168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. SnapShot: CRISPR-RNA-guided adaptive immune systems.
    Carter J; Wiedenheft B
    Cell; 2015 Sep; 163(1):260-260.e1. PubMed ID: 26406380
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unravelling the structural and mechanistic basis of CRISPR-Cas systems.
    van der Oost J; Westra ER; Jackson RN; Wiedenheft B
    Nat Rev Microbiol; 2014 Jul; 12(7):479-92. PubMed ID: 24909109
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Requirements for Pseudomonas aeruginosa Type I-F CRISPR-Cas Adaptation Determined Using a Biofilm Enrichment Assay.
    Heussler GE; Miller JL; Price CE; Collins AJ; O'Toole GA
    J Bacteriol; 2016 Nov; 198(22):3080-3090. PubMed ID: 27573013
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Type IV CRISPR RNA processing and effector complex formation in Aromatoleum aromaticum.
    Özcan A; Pausch P; Linden A; Wulf A; Schühle K; Heider J; Urlaub H; Heimerl T; Bange G; Randau L
    Nat Microbiol; 2019 Jan; 4(1):89-96. PubMed ID: 30397343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of direct repeats and spacers of CRISPR/Cas systems type I-F in Brazilian clinical strains of Pseudomonas aeruginosa.
    Luz ACO; da Silva JMA; Rezende AM; de Barros MPS; Leal-Balbino TC
    Mol Genet Genomics; 2019 Oct; 294(5):1095-1105. PubMed ID: 31098740
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids.
    Pinilla-Redondo R; Mayo-Muñoz D; Russel J; Garrett RA; Randau L; Sørensen SJ; Shah SA
    Nucleic Acids Res; 2020 Feb; 48(4):2000-2012. PubMed ID: 31879772
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Approaches to study CRISPR RNA biogenesis and the key players involved.
    Behler J; Hess WR
    Methods; 2020 Feb; 172():12-26. PubMed ID: 31325492
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An active immune defense with a minimal CRISPR (clustered regularly interspaced short palindromic repeats) RNA and without the Cas6 protein.
    Maier LK; Stachler AE; Saunders SJ; Backofen R; Marchfelder A
    J Biol Chem; 2015 Feb; 290(7):4192-201. PubMed ID: 25512373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quorum sensing controls the Pseudomonas aeruginosa CRISPR-Cas adaptive immune system.
    Høyland-Kroghsbo NM; Paczkowski J; Mukherjee S; Broniewski J; Westra E; Bondy-Denomy J; Bassler BL
    Proc Natl Acad Sci U S A; 2017 Jan; 114(1):131-135. PubMed ID: 27849583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular Mechanisms of RNA Targeting by Cas13-containing Type VI CRISPR-Cas Systems.
    O'Connell MR
    J Mol Biol; 2019 Jan; 431(1):66-87. PubMed ID: 29940185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Shooting the messenger: RNA-targetting CRISPR-Cas systems.
    Zhu Y; Klompe SE; Vlot M; van der Oost J; Staals RHJ
    Biosci Rep; 2018 Jun; 38(3):. PubMed ID: 29748239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Type III CRISPR-Cas System: Introduction And Its Application for Genetic Manipulations.
    Liu T; Pan S; Li Y; Peng N; She Q
    Curr Issues Mol Biol; 2018; 26():1-14. PubMed ID: 28879852
    [TBL] [Abstract][Full Text] [Related]  

  • 15. RNA Guide Complementarity Prevents Self-Targeting in Type VI CRISPR Systems.
    Meeske AJ; Marraffini LA
    Mol Cell; 2018 Sep; 71(5):791-801.e3. PubMed ID: 30122537
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CRISPR-Cas systems restrict horizontal gene transfer in Pseudomonas aeruginosa.
    Wheatley RM; MacLean RC
    ISME J; 2021 May; 15(5):1420-1433. PubMed ID: 33349652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-Throughput Characterization of Cascade type I-E CRISPR Guide Efficacy Reveals Unexpected PAM Diversity and Target Sequence Preferences.
    Fu BX; Wainberg M; Kundaje A; Fire AZ
    Genetics; 2017 Aug; 206(4):1727-1738. PubMed ID: 28634160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three New Cs for CRISPR: Collateral, Communicate, Cooperate.
    Varble A; Marraffini LA
    Trends Genet; 2019 Jun; 35(6):446-456. PubMed ID: 31036344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPR control of virulence in Pseudomonas aeruginosa.
    Wiedenheft B; Bondy-Denomy J
    Cell Res; 2017 Feb; 27(2):163-164. PubMed ID: 28084330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recombination between phages and CRISPR-cas loci facilitates horizontal gene transfer in staphylococci.
    Varble A; Meaden S; Barrangou R; Westra ER; Marraffini LA
    Nat Microbiol; 2019 Jun; 4(6):956-963. PubMed ID: 30886355
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.