BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

522 related articles for article (PubMed ID: 31809468)

  • 41. Deep-learning-assisted diagnosis for knee magnetic resonance imaging: Development and retrospective validation of MRNet.
    Bien N; Rajpurkar P; Ball RL; Irvin J; Park A; Jones E; Bereket M; Patel BN; Yeom KW; Shpanskaya K; Halabi S; Zucker E; Fanton G; Amanatullah DF; Beaulieu CF; Riley GM; Stewart RJ; Blankenberg FG; Larson DB; Jones RH; Langlotz CP; Ng AY; Lungren MP
    PLoS Med; 2018 Nov; 15(11):e1002699. PubMed ID: 30481176
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Application of convolutional neural network to risk evaluation of positive circumferential resection margin of rectal cancer by magnetic resonance imaging].
    Xu JH; Zhou XM; Ma JL; Liu SS; Zhang MS; Zheng XF; Zhang XY; Liu GW; Zhang XX; Lu Y; Wang DS
    Zhonghua Wei Chang Wai Ke Za Zhi; 2020 Jun; 23(6):572-577. PubMed ID: 32521977
    [No Abstract]   [Full Text] [Related]  

  • 43. Differential Diagnosis of Solitary Fibrous Tumor/Hemangiopericytoma and Angiomatous Meningioma Using Three-Dimensional Magnetic Resonance Imaging Texture Feature Model.
    Dong J; Yu M; Miao Y; Shen H; Sui Y; Liu Y; Han L; Li X; Lin M; Guo Y; Xie L
    Biomed Res Int; 2020; 2020():5042356. PubMed ID: 33344637
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Precise discrimination between meningiomas and schwannomas using time-to-signal intensity curves and percentage signal recoveries obtained from dynamic susceptibility perfusion imaging.
    Cebeci H; Kilincer A; Duran Hİ; Seher N; Şahinoğlu M; Karabağlı H; Karabağlı P; Paksoy Y
    J Neuroradiol; 2021 May; 48(3):157-163. PubMed ID: 33065198
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Deep learning with a convolutional neural network model to differentiate renal parenchymal tumors: a preliminary study.
    Zheng Y; Wang S; Chen Y; Du HQ
    Abdom Radiol (NY); 2021 Jul; 46(7):3260-3268. PubMed ID: 33656574
    [TBL] [Abstract][Full Text] [Related]  

  • 46. MRI-Based Multiple Instance Convolutional Neural Network for Increased Accuracy in the Differentiation of Borderline and Malignant Epithelial Ovarian Tumors.
    Jian J; Li Y; Xia W; He Z; Zhang R; Li H; Zhao X; Zhao S; Zhang J; Cai S; Wu X; Gao X; Qiang J
    J Magn Reson Imaging; 2022 Jul; 56(1):173-181. PubMed ID: 34842320
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MR diffusion and dynamic-contrast enhanced imaging to distinguish meningioma, paraganglioma, and schwannoma in the cerebellopontine angle and jugular foramen.
    Ota Y; Liao E; Capizzano AA; Yokota H; Baba A; Kurokawa R; Kurokawa M; Moritani T; Yoshii K; Srinivasan A
    J Neuroimaging; 2022 May; 32(3):502-510. PubMed ID: 34936708
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arterial spin-labeling is useful for the diagnosis of residual or recurrent meningiomas.
    Kikuchi K; Hiwatashi A; Togao O; Yamashita K; Kamei R; Yoshimoto K; Iihara K; Suzuki SO; Iwaki T; Suzuki Y; Honda H
    Eur Radiol; 2018 Oct; 28(10):4334-4342. PubMed ID: 29654561
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Automated image quality evaluation of T
    Esses SJ; Lu X; Zhao T; Shanbhogue K; Dane B; Bruno M; Chandarana H
    J Magn Reson Imaging; 2018 Mar; 47(3):723-728. PubMed ID: 28577329
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting meningioma grades and pathologic marker expression via deep learning.
    Chen J; Xue Y; Ren L; Lv K; Du P; Cheng H; Sun S; Hua L; Xie Q; Wu R; Gong Y
    Eur Radiol; 2024 May; 34(5):2997-3008. PubMed ID: 37853176
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Differentiating Benign from Malignant Renal Tumors Using T2- and Diffusion-Weighted Images: A Comparison of Deep Learning and Radiomics Models Versus Assessment from Radiologists.
    Xu Q; Zhu Q; Liu H; Chang L; Duan S; Dou W; Li S; Ye J
    J Magn Reson Imaging; 2022 Apr; 55(4):1251-1259. PubMed ID: 34462986
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Differentiation of Glioma Mimicking Encephalitis and Encephalitis Using Multiparametric MR-Based Deep Learning.
    Wu W; Li J; Ye J; Wang Q; Zhang W; Xu S
    Front Oncol; 2021; 11():639062. PubMed ID: 33791225
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Application of deep learning-based computer-aided detection system: detecting pneumothorax on chest radiograph after biopsy.
    Park S; Lee SM; Kim N; Choe J; Cho Y; Do KH; Seo JB
    Eur Radiol; 2019 Oct; 29(10):5341-5348. PubMed ID: 30915557
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Convolutional neural network to predict the local recurrence of giant cell tumor of bone after curettage based on pre-surgery magnetic resonance images.
    He Y; Guo J; Ding X; van Ooijen PMA; Zhang Y; Chen A; Oudkerk M; Xie X
    Eur Radiol; 2019 Oct; 29(10):5441-5451. PubMed ID: 30859281
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Convolutional neural network for discriminating nasopharyngeal carcinoma and benign hyperplasia on MRI.
    Wong LM; King AD; Ai QYH; Lam WKJ; Poon DMC; Ma BBY; Chan KCA; Mo FKF
    Eur Radiol; 2021 Jun; 31(6):3856-3863. PubMed ID: 33241522
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Deep learning to distinguish pancreatic cancer tissue from non-cancerous pancreatic tissue: a retrospective study with cross-racial external validation.
    Liu KL; Wu T; Chen PT; Tsai YM; Roth H; Wu MS; Liao WC; Wang W
    Lancet Digit Health; 2020 Jun; 2(6):e303-e313. PubMed ID: 33328124
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Deep convolutional neural network for the diagnosis of thyroid nodules on ultrasound.
    Ko SY; Lee JH; Yoon JH; Na H; Hong E; Han K; Jung I; Kim EK; Moon HJ; Park VY; Lee E; Kwak JY
    Head Neck; 2019 Apr; 41(4):885-891. PubMed ID: 30715773
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Differentiation of carcinosarcoma from endometrial carcinoma on magnetic resonance imaging using deep learning.
    Saida T; Mori K; Hoshiai S; Sakai M; Urushibara A; Ishiguro T; Satoh T; Nakajima T
    Pol J Radiol; 2022; 87():e521-e529. PubMed ID: 36250139
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of a deep learning algorithm for non-mass enhancement on breast MRI: comparison with radiologists' interpretations at various levels.
    Goto M; Sakai K; Toyama Y; Nakai Y; Yamada K
    Jpn J Radiol; 2023 Oct; 41(10):1094-1103. PubMed ID: 37071250
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Deep Learning Approach for MRI in the Diagnosis of Labral Injuries of the Hip Joint.
    Ni M; Wen X; Chen W; Zhao Y; Yuan Y; Zeng P; Wang Q; Wang Y; Yuan H
    J Magn Reson Imaging; 2022 Aug; 56(2):625-634. PubMed ID: 35081273
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.