BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31809494)

  • 21. A structured approach to the study of metabolic control principles in intact and impaired mitochondria.
    Huber HJ; Connolly NM; Dussmann H; Prehn JH
    Mol Biosyst; 2012 Mar; 8(3):828-42. PubMed ID: 22218564
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mitochondrial nitric-oxide synthase: enzyme expression, characterization, and regulation.
    Haynes V; Elfering S; Traaseth N; Giulivi C
    J Bioenerg Biomembr; 2004 Aug; 36(4):341-6. PubMed ID: 15377869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nitric oxide: orchestrating hypoxia regulation through mitochondrial respiration and the endoplasmic reticulum stress response.
    Xu W; Charles IG; Moncada S
    Cell Res; 2005 Jan; 15(1):63-5. PubMed ID: 15686630
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Functional implications of nitric oxide produced by mitochondria in mitochondrial metabolism.
    Giulivi C
    Biochem J; 1998 Jun; 332 ( Pt 3)(Pt 3):673-9. PubMed ID: 9620869
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Analysis of the pathways of nitric oxide utilization in mitochondria.
    Cadenas E; Poderoso JJ; Antunes F; Boveris A
    Free Radic Res; 2000 Dec; 33(6):747-56. PubMed ID: 11237097
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The Role of Metabolic Flexibility in the Regulation of the DNA Damage Response by Nitric Oxide.
    Oleson BJ; Broniowska KA; Yeo CT; Flancher M; Naatz A; Hogg N; Tarakanova VL; Corbett JA
    Mol Cell Biol; 2019 Sep; 39(18):. PubMed ID: 31235477
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Control of mitochondrial function and cell growth by the atypical cadherin Fat1.
    Cao LL; Riascos-Bernal DF; Chinnasamy P; Dunaway CM; Hou R; Pujato MA; O'Rourke BP; Miskolci V; Guo L; Hodgson L; Fiser A; Sibinga NE
    Nature; 2016 Nov; 539(7630):575-578. PubMed ID: 27828948
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitochondrial Respiration in Insulin-Producing β-Cells: General Characteristics and Adaptive Effects of Hypoxia.
    Hals IK; Bruerberg SG; Ma Z; Scholz H; Björklund A; Grill V
    PLoS One; 2015; 10(9):e0138558. PubMed ID: 26401848
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitochondria, Chloroplasts in Animal and Plant Cells: Significance of Conformational Matching.
    Stefano GB; Snyder C; Kream RM
    Med Sci Monit; 2015 Jul; 21():2073-8. PubMed ID: 26184462
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of nitric oxide on cell respiration: A key to understanding its role in cell survival or death.
    Beltrán B; Mathur A; Duchen MR; Erusalimsky JD; Moncada S
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14602-7. PubMed ID: 11121062
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hyperglycemia-associated alterations in cellular signaling and dysregulated mitochondrial bioenergetics in human metabolic disorders.
    Stefano GB; Challenger S; Kream RM
    Eur J Nutr; 2016 Dec; 55(8):2339-2345. PubMed ID: 27084094
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A pivotal role for p53: balancing aerobic respiration and glycolysis.
    Ma W; Sung HJ; Park JY; Matoba S; Hwang PM
    J Bioenerg Biomembr; 2007 Jun; 39(3):243-6. PubMed ID: 17551815
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nitric oxide and mitochondrial respiration.
    Brown GC
    Biochim Biophys Acta; 1999 May; 1411(2-3):351-69. PubMed ID: 10320668
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioenergetics at low oxygen: dependence of respiration and phosphorylation on oxygen and adenosine diphosphate supply.
    Gnaiger E
    Respir Physiol; 2001 Nov; 128(3):277-97. PubMed ID: 11718759
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Programming and regulation of metabolic homeostasis.
    Wilson DF
    Am J Physiol Endocrinol Metab; 2015 Mar; 308(6):E506-17. PubMed ID: 25605644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mitochondrial localization of St14-encoding transmembrane serine protease is involved in neural stem/progenitor cell bioenergetics through binding to F
    Fang JD; Tung HH; Lee SL
    FASEB J; 2019 Mar; 33(3):4327-4340. PubMed ID: 30566397
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neuronal bioenergetics and acute mitochondrial dysfunction: a clue to understanding the central nervous system side effects of efavirenz.
    Funes HA; Apostolova N; Alegre F; Blas-Garcia A; Alvarez A; Marti-Cabrera M; Esplugues JV
    J Infect Dis; 2014 Nov; 210(9):1385-95. PubMed ID: 24813473
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The histidine triad nucleotide-binding protein 2 (HINT-2) positively regulates hepatocellular energy metabolism.
    Rajasekaran R; Felser A; Nuoffer JM; Dufour JF; St-Pierre MV
    FASEB J; 2018 Sep; 32(9):5143-5161. PubMed ID: 29913563
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Role of oxidative metabolism on endothelium-dependent vascular relaxation of isolated vessels.
    Cappelli-Bigazzi M; Battaglia C; Pannain S; Chiariello M; Ambrosio G
    J Mol Cell Cardiol; 1997 Mar; 29(3):871-9. PubMed ID: 9152848
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mitochondrial Respiration in Human Colorectal and Breast Cancer Clinical Material Is Regulated Differently.
    Koit A; Shevchuk I; Ounpuu L; Klepinin A; Chekulayev V; Timohhina N; Tepp K; Puurand M; Truu L; Heck K; Valvere V; Guzun R; Kaambre T
    Oxid Med Cell Longev; 2017; 2017():1372640. PubMed ID: 28781720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.