These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 31809520)

  • 1. Multi-objective AGV scheduling in an automatic sorting system of an unmanned (intelligent) warehouse by using two adaptive genetic algorithms and a multi-adaptive genetic algorithm.
    Liu Y; Ji S; Su Z; Guo D
    PLoS One; 2019; 14(12):e0226161. PubMed ID: 31809520
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multi-objective AGV scheduling in an FMS using a hybrid of genetic algorithm and particle swarm optimization.
    Mousavi M; Yap HJ; Musa SN; Tahriri F; Md Dawal SZ
    PLoS One; 2017; 12(3):e0169817. PubMed ID: 28263994
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Improved Genetic Algorithm for Solving the Multi-AGV Flexible Job Shop Scheduling Problem.
    Meng L; Cheng W; Zhang B; Zou W; Fang W; Duan P
    Sensors (Basel); 2023 Apr; 23(8):. PubMed ID: 37112156
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-AGV path planning with double-path constraints by using an improved genetic algorithm.
    Han Z; Wang D; Liu F; Zhao Z
    PLoS One; 2017; 12(7):e0181747. PubMed ID: 28746355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on multi-load AGV path planning of weaving workshop based on time priority.
    Du LZ; Ke SF; Wang Z; Tao J; Yu LQ; Li HJ
    Math Biosci Eng; 2019 Mar; 16(4):2277-2292. PubMed ID: 31137212
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dynamic integrated scheduling method based on hierarchical planning for heterogeneous AGV fleets in warehouses.
    Hu E; He J; Shen S
    Front Neurorobot; 2022; 16():1053067. PubMed ID: 36699949
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Approach to Integrated Scheduling of Flexible Job-Shop Considering Conflict-Free Routing Problems.
    Sun J; Xu Z; Yan Z; Liu L; Zhang Y
    Sensors (Basel); 2023 May; 23(9):. PubMed ID: 37177729
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-resource collaborative scheduling problem of automated terminal considering the AGV charging effect under COVID-19.
    Sun B; Zhai G; Li S; Pei B
    Ocean Coast Manag; 2023 Feb; 232():106422. PubMed ID: 36407122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research on AGV trackless guidance technology based on the global vision.
    Zheng Z; Lu Y
    Sci Prog; 2022; 105(3):368504221103766. PubMed ID: 35775591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Research on multi-agent genetic algorithm based on tabu search for the job shop scheduling problem.
    Peng C; Wu G; Liao TW; Wang H
    PLoS One; 2019; 14(9):e0223182. PubMed ID: 31560722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy-efficient path planning for a multi-load automated guided vehicle executing multiple transport tasks in a manufacturing workshop environment.
    Zhang Z; Wu L; Zhang B; Jia S; Liu W; Peng T
    Environ Sci Pollut Res Int; 2024 Mar; ():. PubMed ID: 38483719
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Toward Energy-Efficient Routing of Multiple AGVs with Multi-Agent Reinforcement Learning.
    Ye X; Deng Z; Shi Y; Shen W
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multi-Robot Preemptive Task Scheduling with Fault Recovery: A Novel Approach to Automatic Logistics of Smart Factories.
    Kalempa VC; Piardi L; Limeira M; de Oliveira AS
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640854
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multiobjective path optimization of an indoor AGV based on an improved ACO-DWA.
    Xiao J; Yu X; Sun K; Zhou Z; Zhou G
    Math Biosci Eng; 2022 Aug; 19(12):12532-12557. PubMed ID: 36654010
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimal scheduling strategy of electric vehicle based on improved NSGA-III algorithm.
    Wu Y; Yan D; Yang JM; Wang AP; Feng D
    PLoS One; 2024; 19(5):e0298572. PubMed ID: 38758947
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optimal dispatching of regional power grid considering vehicle network interaction.
    Hua Y; Wang S; Wang Y; Zhang L; Liu W
    PLoS One; 2024; 19(7):e0297855. PubMed ID: 39012885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An intelligent method for accident reconstruction involving car and e-bike coupling automatic simulation and multi-objective optimizations.
    Liu Y; Wan X; Xu W; Shi L; Deng G; Bai Z
    Accid Anal Prev; 2022 Jan; 164():106476. PubMed ID: 34844065
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimal Reuse Design Scheduling of Mine Water Based on Improved Whale Algorithm.
    Yue Y; Liu Y; Bo L; Zhang Z; Yang H; Wang Y
    Sensors (Basel); 2022 Jul; 22(14):. PubMed ID: 35890936
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two hybrid flow shop scheduling lines with assembly stage and compatibility constraints.
    Muñoz-Sánchez R; Martínez-Salazar I; González-Velarde JL; Ríos Solís YÁ
    PLoS One; 2024; 19(6):e0304119. PubMed ID: 38905191
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automatic Configuration of Multi-Objective Local Search Algorithms for Permutation Problems.
    Blot A; Kessaci MÉ; Jourdan L; Hoos HH
    Evol Comput; 2019; 27(1):147-171. PubMed ID: 30407875
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.