BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 31810037)

  • 1. Synthesis of silver @hydroxyapatite nanoparticles based biocomposite and their assessment for viability of Osseointegration for rabbit knee joint anterior cruciate ligament rehabilitation.
    Jiang S; Liu X; Liu Y; Liu J; He W; Dong Y
    J Photochem Photobiol B; 2020 Jan; 202():111677. PubMed ID: 31810037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancement of osseointegration of polyethylene terephthalate artificial ligament by coating of silk fibroin and depositing of hydroxyapatite.
    Jiang J; Wan F; Yang J; Hao W; Wang Y; Yao J; Shao Z; Zhang P; Chen J; Zhou L; Chen S
    Int J Nanomedicine; 2014; 9():4569-80. PubMed ID: 25302023
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration.
    Zhao ZH; Ma XL; Zhao B; Tian P; Ma JX; Kang JY; Zhang Y; Guo Y; Sun L
    Cell Prolif; 2021 Jul; 54(7):e13043. PubMed ID: 34008897
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhance the biocompatibility and osseointegration of polyethylene terephthalate ligament by plasma spraying with hydroxyapatite in vitro and in vivo.
    Wang S; Ge Y; Ai C; Jiang J; Cai J; Sheng D; Wan F; Liu X; Hao Y; Chen J; Chen S
    Int J Nanomedicine; 2018; 13():3609-3623. PubMed ID: 29983557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quercetin Inlaid Silk Fibroin/Hydroxyapatite Scaffold Promotes Enhanced Osteogenesis.
    Song JE; Tripathy N; Lee DH; Park JH; Khang G
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):32955-32964. PubMed ID: 30188112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanically-reinforced electrospun composite silk fibroin nanofibers containing hydroxyapatite nanoparticles.
    Kim H; Che L; Ha Y; Ryu W
    Mater Sci Eng C Mater Biol Appl; 2014 Jul; 40():324-35. PubMed ID: 24857500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biocompatiable silk fibroin/carboxymethyl chitosan/strontium substituted hydroxyapatite/cellulose nanocrystal composite scaffolds for bone tissue engineering.
    Zhang XY; Chen YP; Han J; Mo J; Dong PF; Zhuo YH; Feng Y
    Int J Biol Macromol; 2019 Sep; 136():1247-1257. PubMed ID: 31247228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro evaluation of electrospun silk fibroin/nano-hydroxyapatite/BMP-2 scaffolds for bone regeneration.
    Niu B; Li B; Gu Y; Shen X; Liu Y; Chen L
    J Biomater Sci Polym Ed; 2017 Feb; 28(3):257-270. PubMed ID: 27931176
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biomineralizaion of hydroxyapatite on polyethylene terephthalate artificial ligaments promotes graft-bone healing after anterior cruciate ligament reconstruction: An in vitro and in vivo study.
    Cai J; Ai C; Chen J; Chen S
    J Biomater Appl; 2020 Aug; 35(2):193-204. PubMed ID: 32338167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro and in vivo evaluations of three-dimensional hydroxyapatite/silk fibroin nanocomposite scaffolds.
    Gholipourmalekabadi M; Mozafari M; Gholipourmalekabadi M; Nazm Bojnordi M; Hashemi-Soteh MB; Salimi M; Rezaei N; Sameni M; Samadikuchaksaraei A; Ghasemi Hamidabadi H
    Biotechnol Appl Biochem; 2015; 62(4):441-50. PubMed ID: 25196187
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering.
    Kim JH; Kim DK; Lee OJ; Ju HW; Lee JM; Moon BM; Park HJ; Kim DW; Lee JH; Park CH
    Int J Biol Macromol; 2016 Jan; 82():160-7. PubMed ID: 26257379
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Gold and Hydroxyapatite Nano-Composite Scaffolds for Anterior Cruciate Ligament Reconstruction: In Vitro Characterization.
    Smith SE; White RA; Grant DA; Grant SA
    J Nanosci Nanotechnol; 2016 Jan; 16(1):1160-9. PubMed ID: 27398580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface-modified silk hydrogel containing hydroxyapatite nanoparticle with hyaluronic acid-dopamine conjugate.
    Kim HH; Park JB; Kang MJ; Park YH
    Int J Biol Macromol; 2014 Sep; 70():516-22. PubMed ID: 24999272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced biomineralization in osteoblasts on a novel electrospun biocomposite nanofibrous substrate of hydroxyapatite/collagen/chitosan.
    Zhang Y; Reddy VJ; Wong SY; Li X; Su B; Ramakrishna S; Lim CT
    Tissue Eng Part A; 2010 Jun; 16(6):1949-60. PubMed ID: 20088700
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Response of human mesenchymal stem cells to intrafibrillar nanohydroxyapatite content and extrafibrillar nanohydroxyapatite in biomimetic chitosan/silk fibroin/nanohydroxyapatite nanofibrous membrane scaffolds.
    Lai GJ; Shalumon KT; Chen JP
    Int J Nanomedicine; 2015; 10():567-84. PubMed ID: 25609962
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Composite scaffolds of nano-hydroxyapatite and silk fibroin enhance mesenchymal stem cell-based bone regeneration via the interleukin 1 alpha autocrine/paracrine signaling loop.
    Liu H; Xu GW; Wang YF; Zhao HS; Xiong S; Wu Y; Heng BC; An CR; Zhu GH; Xie DH
    Biomaterials; 2015 May; 49():103-12. PubMed ID: 25725559
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Addition of MgO nanoparticles and plasma surface treatment of three-dimensional printed polycaprolactone/hydroxyapatite scaffolds for improving bone regeneration.
    Roh HS; Lee CM; Hwang YH; Kook MS; Yang SW; Lee D; Kim BH
    Mater Sci Eng C Mater Biol Appl; 2017 May; 74():525-535. PubMed ID: 28254327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization and biocompatibility of nanohybrid scaffold prepared via in situ crystallization of hydroxyapatite in chitosan matrix.
    Chen J; Nan K; Yin S; Wang Y; Wu T; Zhang Q
    Colloids Surf B Biointerfaces; 2010 Dec; 81(2):640-7. PubMed ID: 20817419
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic potential of human mesenchymal stem cells on eggshells-derived hydroxyapatite nanoparticles for tissue engineering.
    Patel DK; Jin B; Dutta SD; Lim KT
    J Biomed Mater Res B Appl Biomater; 2020 Jul; 108(5):1953-1960. PubMed ID: 31820846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrospun Silk Fibroin Nanofibrous Scaffolds with Two-Stage Hydroxyapatite Functionalization for Enhancing the Osteogenic Differentiation of Human Adipose-Derived Mesenchymal Stem Cells.
    Ko E; Lee JS; Kim H; Yang SY; Yang D; Yang K; Lee J; Shin J; Yang HS; Ryu W; Cho SW
    ACS Appl Mater Interfaces; 2018 Mar; 10(9):7614-7625. PubMed ID: 28475306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.