These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 31810285)

  • 1. Some Properties of Electron Beam-Irradiated Sheep Wool Linked to Cr(III) Sorption.
    Braniša J; Kleinová A; Jomová K; Malá R; Morgunov V; Porubská M
    Molecules; 2019 Dec; 24(23):. PubMed ID: 31810285
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Why Natural or Electron Irradiated Sheep Wool Show Anomalous Sorption of Higher Concentrations of Copper(II).
    Porubská M; Kleinová A; Hybler P; Braniša J
    Molecules; 2018 Dec; 23(12):. PubMed ID: 30513854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of Post-Exposure Time in Co(II) Sorption of Higher Concentrations on Electron Irradiated Sheep Wool.
    Braniša J; Jomová K; Kovalčíková R; Hybler P; Porubská M
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31330793
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Competitive Adsorption of Cr(III) and Cu(II) on Electron Beam-Irradiated Sheep Wool from Binary Solutions Can be Controlled by the Absorbed Dose.
    Braniša J; Koóšová K; Lendelová K; Porubská M
    ACS Omega; 2022 Oct; 7(42):38015-38024. PubMed ID: 36312384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sheep Wool Humidity under Electron Irradiation Affects Wool Sorptivity towards Co(II) Ions.
    Braniša J; Kleinová A; Jomová K; Weissabel R; Cvik M; Branišová Z; Porubská M
    Molecules; 2021 Aug; 26(17):. PubMed ID: 34500638
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium(VI) sorption efficiency of acid-activated banana peel over organo-montmorillonite in aqueous solutions.
    Ashraf A; Bibi I; Niazi NK; Ok YS; Murtaza G; Shahid M; Kunhikrishnan A; Li D; Mahmood T
    Int J Phytoremediation; 2017 Jul; 19(7):605-613. PubMed ID: 27849143
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kappaphycus alvarezii waste biomass: a potential biosorbent for chromium ions removal.
    Kang OL; Ramli N; Said M; Ahmad M; Yasir SM; Ariff A
    J Environ Sci (China); 2011; 23(6):918-22. PubMed ID: 22066214
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Variation of pH, conductivity and potential values in chromium (VI) removal by wool.
    Balkaya N
    Environ Technol; 2003 Jan; 24(1):11-6. PubMed ID: 12641247
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Study of Ultrasonication-Induced and Naturally Self-Assembled Silk Fibroin-Wool Keratin Hydrogel Biomaterials.
    Vu T; Xue Y; Vuong T; Erbe M; Bennet C; Palazzo B; Popielski L; Rodriguez N; Hu X
    Int J Mol Sci; 2016 Sep; 17(9):. PubMed ID: 27618011
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a novel chitosan polymer-based adsorbent for the removal of chromium (III) in aqueous solutions.
    Zuo X; Balasubramanian R
    Carbohydr Polym; 2013 Feb; 92(2):2181-6. PubMed ID: 23399274
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polyethylenimine-modified fungal biomass as a high-capacity biosorbent for Cr(VI) anions: sorption capacity and uptake mechanisms.
    Deng S; Ting YP
    Environ Sci Technol; 2005 Nov; 39(21):8490-6. PubMed ID: 16294892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sorption of chromium with struvite during phosphorus recovery.
    Rouff AA
    Environ Sci Technol; 2012 Nov; 46(22):12493-501. PubMed ID: 23113825
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromium (III) uptake by agro-waste biosorbents: chemical characterization, sorption-desorption studies, and mechanism.
    Bernardo GR; Rene RM; Ma Catalina AD
    J Hazard Mater; 2009 Oct; 170(2-3):845-54. PubMed ID: 19523757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: mechanistic insights and application.
    Choudhary B; Paul D; Singh A; Gupta T
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16786-16797. PubMed ID: 28567678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of microbial exopolymeric substances (EPS) on chromium sorption and transport in heterogeneous subsurface soils: II. Binding of Cr(III) in EPS/soil system.
    Kantar C; Demiray H; Dogan NM
    Chemosphere; 2011 Mar; 82(10):1496-505. PubMed ID: 21094978
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sequestration of hexavalent chromium from aqueous solutions by activated carbon derived from Macadamia nutshells.
    Pakade VE; Nchoe OB; Hlungwane L; Tavengwa NT
    Water Sci Technol; 2017 Jan; 75(1-2):196-206. PubMed ID: 28067660
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Retention and release of hexavalent and trivalent chromium by chitosan, olive stone activated carbon, and their blend.
    Ba S; Alagui A; Hajjaji M
    Environ Sci Pollut Res Int; 2018 Jul; 25(20):19585-19604. PubMed ID: 29736637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A morphology-related study on photodegradation of protein fibres.
    Zhang H; Millington KR; Wang X
    J Photochem Photobiol B; 2008 Sep; 92(3):135-43. PubMed ID: 18617417
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of termite nest for adsorption of Cr(VI).
    Araújo BR; Reis JO; Rezende EI; Mangrich AS; Wisniewski A; Dick DP; Romão LP
    J Environ Manage; 2013 Nov; 129():216-23. PubMed ID: 23954388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Properties of radicals formed by the irradiation of wool fibers.
    Wang H; Liu R; Tu T; Xie L; Sheng K; Chen Y; Tang X
    J Radiat Res; 2004 Mar; 45(1):77-81. PubMed ID: 15133293
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.