These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 31810304)

  • 1. Multipotent Neurotrophic Effects of Hepatocyte Growth Factor in Spinal Cord Injury.
    Yamane K; Misawa H; Takigawa T; Ito Y; Ozaki T; Matsukawa A
    Int J Mol Sci; 2019 Dec; 20(23):. PubMed ID: 31810304
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hepatocyte growth factor promotes endogenous repair and functional recovery after spinal cord injury.
    Kitamura K; Iwanami A; Nakamura M; Yamane J; Watanabe K; Suzuki Y; Miyazawa D; Shibata S; Funakoshi H; Miyatake S; Coffin RS; Nakamura T; Toyama Y; Okano H
    J Neurosci Res; 2007 Aug; 85(11):2332-42. PubMed ID: 17549731
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of hepatocyte growth factor in mesenchymal stem cell-induced recovery in spinal cord injured rats.
    Song P; Han T; Xiang X; Wang Y; Fang H; Niu Y; Shen C
    Stem Cell Res Ther; 2020 May; 11(1):178. PubMed ID: 32410702
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expression of hepatocyte growth factor and c-Met after spinal cord injury in rats.
    Shimamura M; Sato N; Sata M; Wakayama K; Ogihara T; Morishita R
    Brain Res; 2007 Jun; 1151():188-94. PubMed ID: 17425951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of Hepatocyte Growth Factor for Acute Spinal Cord Injury: The Road from Basic Studies to Human Treatment.
    Kitamura K; Nagoshi N; Tsuji O; Matsumoto M; Okano H; Nakamura M
    Int J Mol Sci; 2019 Feb; 20(5):. PubMed ID: 30823442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hepatocyte growth factor reduces astrocytic scar formation and promotes axonal growth beyond glial scars after spinal cord injury.
    Jeong SR; Kwon MJ; Lee HG; Joe EH; Lee JH; Kim SS; Suh-Kim H; Kim BG
    Exp Neurol; 2012 Jan; 233(1):312-22. PubMed ID: 22079829
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurotrophic factors, gene therapy, and neural stem cells for spinal cord repair.
    Blesch A; Lu P; Tuszynski MH
    Brain Res Bull; 2002 Apr; 57(6):833-8. PubMed ID: 12031281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Collagen-Binding Hepatocyte Growth Factor (HGF) alone or with a Gelatin- furfurylamine Hydrogel Enhances Functional Recovery in Mice after Spinal Cord Injury.
    Yamane K; Mazaki T; Shiozaki Y; Yoshida A; Shinohara K; Nakamura M; Yoshida Y; Zhou D; Kitajima T; Tanaka M; Ito Y; Ozaki T; Matsukawa A
    Sci Rep; 2018 Jan; 8(1):917. PubMed ID: 29343699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced Functional Recovery from Spinal Cord Injury in Aged Mice after Stem Cell Transplantation through HGF Induction.
    Takano M; Kawabata S; Shibata S; Yasuda A; Nori S; Tsuji O; Nagoshi N; Iwanami A; Ebise H; Horiuchi K; Okano H; Nakamura M
    Stem Cell Reports; 2017 Mar; 8(3):509-518. PubMed ID: 28216143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genetically modified mesenchymal stem cells (MSCs) promote axonal regeneration and prevent hypersensitivity after spinal cord injury.
    Kumagai G; Tsoulfas P; Toh S; McNiece I; Bramlett HM; Dietrich WD
    Exp Neurol; 2013 Oct; 248():369-80. PubMed ID: 23856436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury.
    Kitamura K; Fujiyoshi K; Yamane J; Toyota F; Hikishima K; Nomura T; Funakoshi H; Nakamura T; Aoki M; Toyama Y; Okano H; Nakamura M
    PLoS One; 2011; 6(11):e27706. PubMed ID: 22140459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bone marrow stromal cell sheets may promote axonal regeneration and functional recovery with suppression of glial scar formation after spinal cord transection injury in rats.
    Okuda A; Horii-Hayashi N; Sasagawa T; Shimizu T; Shigematsu H; Iwata E; Morimoto Y; Masuda K; Koizumi M; Akahane M; Nishi M; Tanaka Y
    J Neurosurg Spine; 2017 Mar; 26(3):388-395. PubMed ID: 27885959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional recovery after human umbilical cord blood cells transplantation with brain-derived neutrophic factor into the spinal cord injured rat.
    Kuh SU; Cho YE; Yoon DH; Kim KN; Ha Y
    Acta Neurochir (Wien); 2005 Sep; 147(9):985-92; discussion 992. PubMed ID: 16010451
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Neutralization of ciliary neurotrophic factor reduces astrocyte production from transplanted neural stem cells and promotes regeneration of corticospinal tract fibers in spinal cord injury.
    Ishii K; Nakamura M; Dai H; Finn TP; Okano H; Toyama Y; Bregman BS
    J Neurosci Res; 2006 Dec; 84(8):1669-81. PubMed ID: 17044031
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective control of neuropathic pain by transient expression of hepatocyte growth factor in a mouse chronic constriction injury model.
    Nho B; Lee J; Lee J; Ko KR; Lee SJ; Kim S
    FASEB J; 2018 Sep; 32(9):5119-5131. PubMed ID: 29913557
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transplantation of Cerebral Dopamine Neurotrophic Factor Transducted BMSCs in Contusion Spinal Cord Injury of Rats: Promotion of Nerve Regeneration by Alleviating Neuroinflammation.
    Zhao H; Cheng L; Du X; Hou Y; Liu Y; Cui Z; Nie L
    Mol Neurobiol; 2016 Jan; 53(1):187-199. PubMed ID: 25421210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury.
    Lu P; Jones LL; Snyder EY; Tuszynski MH
    Exp Neurol; 2003 Jun; 181(2):115-29. PubMed ID: 12781986
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy.
    Zhang J; Lu X; Feng G; Gu Z; Sun Y; Bao G; Xu G; Lu Y; Chen J; Xu L; Feng X; Cui Z
    Cell Tissue Res; 2016 Oct; 366(1):129-42. PubMed ID: 27147262
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intervention strategies to enhance anatomical plasticity and recovery of function after spinal cord injury.
    Bregman BS; Diener PS; McAtee M; Dai HN; James C
    Adv Neurol; 1997; 72():257-75. PubMed ID: 8993704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.