These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
259 related articles for article (PubMed ID: 31810316)
1. Use of Competitive Filamentous Fungi as an Alternative Approach for Mycotoxin Risk Reduction in Staple Cereals: State of Art and Future Perspectives. Sarrocco S; Mauro A; Battilani P Toxins (Basel); 2019 Dec; 11(12):. PubMed ID: 31810316 [TBL] [Abstract][Full Text] [Related]
2. Biological control as a strategy to reduce the impact of mycotoxins in peanuts, grapes and cereals in Argentina. Chulze SN; Palazzini JM; Torres AM; Barros G; Ponsone ML; Geisen R; Schmidt-Heydt M; Köhl J Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2015; 32(4):471-9. PubMed ID: 25427716 [TBL] [Abstract][Full Text] [Related]
3. Occurrence of Mycotoxins and Toxigenic Fungi in Cereals and Application of Yeast Volatiles for Their Biological Control. Alkuwari A; Hassan ZU; Zeidan R; Al-Thani R; Jaoua S Toxins (Basel); 2022 Jun; 14(6):. PubMed ID: 35737064 [TBL] [Abstract][Full Text] [Related]
4. Relationship between mycoparasites lifestyles and biocontrol behaviors against Fusarium spp. and mycotoxins production. Kim SH; Vujanovic V Appl Microbiol Biotechnol; 2016 Jun; 100(12):5257-72. PubMed ID: 27121573 [TBL] [Abstract][Full Text] [Related]
5. Molds and mycotoxin content of cereals in southeastern Romania. Tabuc C; Marin D; Guerre P; Sesan T; Bailly JD J Food Prot; 2009 Mar; 72(3):662-5. PubMed ID: 19343960 [TBL] [Abstract][Full Text] [Related]
6. Influence of Two Garlic-Derived Compounds, Propyl Propane Thiosulfonate (PTS) and Propyl Propane Thiosulfinate (PTSO), on Growth and Mycotoxin Production by Mylona K; Garcia-Cela E; Sulyok M; Medina A; Magan N Toxins (Basel); 2019 Aug; 11(9):. PubMed ID: 31461909 [TBL] [Abstract][Full Text] [Related]
7. Phytopathogenic organisms and mycotoxigenic fungi: Why do we control one and neglect the other? A biological control perspective in Malaysia. Yazid SNE; Jinap S; Ismail SI; Magan N; Samsudin NIP Compr Rev Food Sci Food Saf; 2020 Mar; 19(2):643-669. PubMed ID: 33325175 [TBL] [Abstract][Full Text] [Related]
9. Regional differences in the composition of Fusarium Head Blight pathogens and mycotoxins associated with wheat in Mexico. Cerón-Bustamante M; Ward TJ; Kelly A; Vaughan MM; McCormick SP; Cowger C; Leyva-Mir SG; Villaseñor-Mir HE; Ayala-Escobar V; Nava-Díaz C Int J Food Microbiol; 2018 May; 273():11-19. PubMed ID: 29554557 [TBL] [Abstract][Full Text] [Related]
10. Diverse mycotoxin threats to safe food and feed cereals. Latham RL; Boyle JT; Barbano A; Loveman WG; Brown NA Essays Biochem; 2023 Sep; 67(5):797-809. PubMed ID: 37313591 [TBL] [Abstract][Full Text] [Related]
12. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Oldenburg E; Höppner F; Ellner F; Weinert J Mycotoxin Res; 2017 Aug; 33(3):167-182. PubMed ID: 28455556 [TBL] [Abstract][Full Text] [Related]
13. In-house validation of a rapid and efficient procedure for simultaneous determination of ergot alkaloids and other mycotoxins in wheat and maize. Arroyo-Manzanares N; De Ruyck K; Uka V; Gámiz-Gracia L; García-Campaña AM; De Saeger S; Diana Di Mavungu J Anal Bioanal Chem; 2018 Sep; 410(22):5567-5581. PubMed ID: 29574560 [TBL] [Abstract][Full Text] [Related]
14. From laboratory to the field: biological control of Fusarium graminearum on infected maize crop residues. Gimeno A; Kägi A; Drakopoulos D; Bänziger I; Lehmann E; Forrer HR; Keller B; Vogelgsang S J Appl Microbiol; 2020 Sep; 129(3):680-694. PubMed ID: 32176428 [TBL] [Abstract][Full Text] [Related]
15. Characterization of Argentinian Endemic Aspergillus flavus Isolates and Their Potential Use as Biocontrol Agents for Mycotoxins in Maize. Camiletti BX; Moral J; Asensio CM; Torrico AK; Lucini EI; Giménez-Pecci MP; Michailides TJ Phytopathology; 2018 Jul; 108(7):818-828. PubMed ID: 29384448 [TBL] [Abstract][Full Text] [Related]
16. Biocontrol Agents Reduce Progression and Mycotoxin Production of Pellan L; Dieye CAT; Durand N; Fontana A; Schorr-Galindo S; Strub C Toxins (Basel); 2021 Aug; 13(9):. PubMed ID: 34564602 [TBL] [Abstract][Full Text] [Related]
17. In vitro experimental environments lacking or containing soil disparately affect competition experiments of Aspergillus flavus and co-occurring fungi in maize grains. Falade TD; Syed Mohdhamdan SH; Sultanbawa Y; Fletcher MT; Harvey JJ; Chaliha M; Fox GP Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2016 Jul; 33(7):1241-53. PubMed ID: 27264786 [TBL] [Abstract][Full Text] [Related]
18. Critical Assessment of Colombo EM; Kunova A; Cortesi P; Saracchi M; Pasquali M Int J Mol Sci; 2019 Dec; 20(24):. PubMed ID: 31817248 [TBL] [Abstract][Full Text] [Related]
19. Fusarium cerealis causing Fusarium head blight of durum wheat and its associated mycotoxins. Palacios SA; Del Canto A; Erazo J; Torres AM Int J Food Microbiol; 2021 May; 346():109161. PubMed ID: 33773354 [TBL] [Abstract][Full Text] [Related]
20. Rapid Detection and Identification of Mycotoxigenic Fungi and Mycotoxins in Stored Wheat Grain. Sadhasivam S; Britzi M; Zakin V; Kostyukovsky M; Trostanetsky A; Quinn E; Sionov E Toxins (Basel); 2017 Sep; 9(10):. PubMed ID: 28946706 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]