BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31810451)

  • 21. Elicitin genes expressed in vitro by certain tobacco isolates of Phytophthora parasitica are down regulated during compatible interactions.
    Colas V; Conrod S; Venard P; Keller H; Ricci P; Panabières F
    Mol Plant Microbe Interact; 2001 Mar; 14(3):326-35. PubMed ID: 11277430
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The Raf-like kinase Raf36 negatively regulates plant resistance against the oomycete pathogen Phytophthora parasitica by targeting MKK2.
    Li J; Deng F; Wang H; Qiang X; Meng Y; Shan W
    Mol Plant Pathol; 2022 Apr; 23(4):530-542. PubMed ID: 34935273
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Effector Repertoire of
    Rojas-Estevez P; Urbina-Gómez DA; Ayala-Usma DA; Guayazan-Palacios N; Mideros MF; Bernal AJ; Cardenas M; Restrepo S
    Front Genet; 2020; 11():579. PubMed ID: 32582295
    [No Abstract]   [Full Text] [Related]  

  • 24. Transcriptome dynamics of Arabidopsis thaliana root penetration by the oomycete pathogen Phytophthora parasitica.
    Attard A; Evangelisti E; Kebdani-Minet N; Panabières F; Deleury E; Maggio C; Ponchet M; Gourgues M
    BMC Genomics; 2014 Jun; 15(1):538. PubMed ID: 24974100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two genes encoding GH10 xylanases are essential for the virulence of the oomycete plant pathogen Phytophthora parasitica.
    Lai MW; Liou RF
    Curr Genet; 2018 Aug; 64(4):931-943. PubMed ID: 29470644
    [TBL] [Abstract][Full Text] [Related]  

  • 26. miR398b and AtC2GnT form a negative feedback loop to regulate Arabidopsis thaliana resistance against Phytophthora parasitica.
    Gou X; Zhong C; Zhang P; Mi L; Li Y; Lu W; Zheng J; Xu J; Meng Y; Shan W
    Plant J; 2022 Jul; 111(2):360-373. PubMed ID: 35506331
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracellular and extracellular phosphatidylinositol 3-phosphate produced by Phytophthora species is important for infection.
    Lu S; Chen L; Tao K; Sun N; Wu Y; Lu X; Wang Y; Dou D
    Mol Plant; 2013 Sep; 6(5):1592-604. PubMed ID: 23475996
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Phytophthora parasitica RXLR effector penetration-specific effector 1 favours Arabidopsis thaliana infection by interfering with auxin physiology.
    Evangelisti E; Govetto B; Minet-Kebdani N; Kuhn ML; Attard A; Ponchet M; Panabières F; Gourgues M
    New Phytol; 2013 Jul; 199(2):476-489. PubMed ID: 23594295
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A Phytophthora sojae effector PsCRN63 forms homo-/hetero-dimers to suppress plant immunity via an inverted association manner.
    Li Q; Zhang M; Shen D; Liu T; Chen Y; Zhou JM; Dou D
    Sci Rep; 2016 May; 6():26951. PubMed ID: 27243217
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Random mutagenesis screen shows that Phytophthora capsici CRN83_152-mediated cell death is not required for its virulence function(s).
    Amaro TMMM; Thilliez GJA; Mcleod RA; Huitema E
    Mol Plant Pathol; 2018 May; 19(5):1114-1126. PubMed ID: 28779542
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Phytophthora sojae CRN effector mediates phosphorylation and degradation of plant aquaporin proteins to suppress host immune signaling.
    Ai G; Xia Q; Song T; Li T; Zhu H; Peng H; Liu J; Fu X; Zhang M; Jing M; Xia A; Dou D
    PLoS Pathog; 2021 Mar; 17(3):e1009388. PubMed ID: 33711077
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gene duplication and fragment recombination drive functional diversification of a superfamily of cytoplasmic effectors in Phytophthora sojae.
    Shen D; Liu T; Ye W; Liu L; Liu P; Wu Y; Wang Y; Dou D
    PLoS One; 2013; 8(7):e70036. PubMed ID: 23922898
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Two host cytoplasmic effectors are required for pathogenesis of Phytophthora sojae by suppression of host defenses.
    Liu T; Ye W; Ru Y; Yang X; Gu B; Tao K; Lu S; Dong S; Zheng X; Shan W; Wang Y; Dou D
    Plant Physiol; 2011 Jan; 155(1):490-501. PubMed ID: 21071601
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Cellular and molecular characterization of Phytophthora parasitica appressorium-mediated penetration.
    Kebdani N; Pieuchot L; Deleury E; Panabières F; Le Berre JY; Gourgues M
    New Phytol; 2010 Jan; 185(1):248-57. PubMed ID: 19807870
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Two cytoplasmic effectors of Phytophthora sojae regulate plant cell death via interactions with plant catalases.
    Zhang M; Li Q; Liu T; Liu L; Shen D; Zhu Y; Liu P; Zhou JM; Dou D
    Plant Physiol; 2015 Jan; 167(1):164-75. PubMed ID: 25424308
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioinformatic characterisation of genes encoding cell wall degrading enzymes in the Phytophthora parasitica genome.
    Blackman LM; Cullerne DP; Hardham AR
    BMC Genomics; 2014 Sep; 15():785. PubMed ID: 25214042
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional characterization of a gene family encoding Polygalacturonases in Phytophthora parasitica.
    Wu CH; Yan HZ; Liu LF; Liou RF
    Mol Plant Microbe Interact; 2008 Apr; 21(4):480-9. PubMed ID: 18321193
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Host-plant resistance associated with Poncirus trifoliata influence oviposition, development and adult emergence of Diaphorina citri (Hemiptera: Liviidae).
    George J; Lapointe SL
    Pest Manag Sci; 2019 Jan; 75(1):279-285. PubMed ID: 29885090
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mutations in PpAGO3 Lead to Enhanced Virulence of
    Xu J; Li Y; Jia J; Xiong W; Zhong C; Huang G; Gou X; Meng Y; Shan W
    Front Microbiol; 2022; 13():856106. PubMed ID: 35401482
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Specific Detection of
    Wang R; Zhou R; Meng Y; Zheng J; Lu W; Yang Y; Yang J; Wu Y; Shan W
    Plant Dis; 2024 Apr; 108(4):987-995. PubMed ID: 37884481
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.