BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

356 related articles for article (PubMed ID: 31810554)

  • 1. Type I interferons and dendritic cells in cancer immunotherapy.
    Sprooten J; Agostinis P; Garg AD
    Int Rev Cell Mol Biol; 2019; 348():217-262. PubMed ID: 31810554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Type I interferons in anticancer immunity.
    Zitvogel L; Galluzzi L; Kepp O; Smyth MJ; Kroemer G
    Nat Rev Immunol; 2015 Jul; 15(7):405-14. PubMed ID: 26027717
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type I interferon-mediated tumor immunity and its role in immunotherapy.
    Yu R; Zhu B; Chen D
    Cell Mol Life Sci; 2022 Mar; 79(3):191. PubMed ID: 35292881
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting Cytosolic Nucleic Acid-Sensing Pathways for Cancer Immunotherapies.
    Iurescia S; Fioretti D; Rinaldi M
    Front Immunol; 2018; 9():711. PubMed ID: 29686682
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Are Conventional Type 1 Dendritic Cells Critical for Protective Antitumor Immunity and How?
    Cancel JC; Crozat K; Dalod M; Mattiuz R
    Front Immunol; 2019; 10():9. PubMed ID: 30809220
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms and pathways of innate immune activation and regulation in health and cancer.
    Cui J; Chen Y; Wang HY; Wang RF
    Hum Vaccin Immunother; 2014; 10(11):3270-85. PubMed ID: 25625930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of type I interferon in inducing a protective immune response: perspectives for clinical applications.
    Rizza P; Moretti F; Capone I; Belardelli F
    Cytokine Growth Factor Rev; 2015 Apr; 26(2):195-201. PubMed ID: 25466627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Type I Interferon Delivery by iPSC-Derived Myeloid Cells Elicits Antitumor Immunity via XCR1
    Tsuchiya N; Zhang R; Iwama T; Ueda N; Liu T; Tatsumi M; Sasaki Y; Shimoda R; Osako Y; Sawada Y; Kubo Y; Miyashita A; Fukushima S; Cheng Z; Nakaki R; Takubo K; Okada S; Kaneko S; Ihn H; Kaisho T; Nishimura Y; Senju S; Endo I; Nakatsura T; Uemura Y
    Cell Rep; 2019 Oct; 29(1):162-175.e9. PubMed ID: 31577946
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of Newcastle disease virus mediated dendritic cell activation and cross-priming tumor-specific immune responses ex vivo.
    Xu Q; Rangaswamy US; Wang W; Robbins SH; Harper J; Jin H; Cheng X
    Int J Cancer; 2020 Jan; 146(2):531-541. PubMed ID: 31584185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Type I and II interferons toward ideal vaccine and immunotherapy.
    Temizoz B; Ishii KJ
    Expert Rev Vaccines; 2021 May; 20(5):527-544. PubMed ID: 33993812
    [No Abstract]   [Full Text] [Related]  

  • 11. Between biology and medicine: perspectives on the use of dendritic cells in anticancer therapy.
    Szczygieł A; Pajtasz-Piasecka E
    Postepy Hig Med Dosw (Online); 2017 Nov; 71(0):921-941. PubMed ID: 29176007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human Plasmacytoid and Monocyte-Derived Dendritic Cells Display Distinct Metabolic Profile Upon RIG-I Activation.
    Fekete T; Sütö MI; Bencze D; Mázló A; Szabo A; Biro T; Bacsi A; Pazmandi K
    Front Immunol; 2018; 9():3070. PubMed ID: 30622542
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rationale for stimulator of interferon genes-targeted cancer immunotherapy.
    Rivera Vargas T; Benoit-Lizon I; Apetoh L
    Eur J Cancer; 2017 Apr; 75():86-97. PubMed ID: 28219022
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo cancer vaccination: Which dendritic cells to target and how?
    Chiang CL; Kandalaft LE
    Cancer Treat Rev; 2018 Dec; 71():88-101. PubMed ID: 30390423
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Targeting TLR3 with no RIG-I/MDA5 activation is effective in immunotherapy for cancer.
    Seya T; Azuma M; Matsumoto M
    Expert Opin Ther Targets; 2013 May; 17(5):533-44. PubMed ID: 23414438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recent advances on the immunomodulatory effects of IFN-alpha: implications for cancer immunotherapy and autoimmunity.
    Rizza P; Moretti F; Belardelli F
    Autoimmunity; 2010 Apr; 43(3):204-9. PubMed ID: 20187707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from Irradiated Cancer Cells to DCs.
    Diamond JM; Vanpouille-Box C; Spada S; Rudqvist NP; Chapman JR; Ueberheide BM; Pilones KA; Sarfraz Y; Formenti SC; Demaria S
    Cancer Immunol Res; 2018 Aug; 6(8):910-920. PubMed ID: 29907693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engaging Pattern Recognition Receptors in Solid Tumors to Generate Systemic Antitumor Immunity.
    Brown M
    Cancer Treat Res; 2022; 183():91-129. PubMed ID: 35551657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell death and immunity in cancer: From danger signals to mimicry of pathogen defense responses.
    Garg AD; Agostinis P
    Immunol Rev; 2017 Nov; 280(1):126-148. PubMed ID: 29027218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Antiviral Responses in Cancer: Boosting Antitumor Immunity Through Activation of Interferon Pathway in the Tumor Microenvironment.
    Vitiello GAF; Ferreira WAS; Cordeiro de Lima VC; Medina TDS
    Front Immunol; 2021; 12():782852. PubMed ID: 34925363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.