These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 31810674)

  • 21. Reactivation of fungal spores in water following UV disinfection: Effect of temperature, dark delay, and real water matrices.
    Wen G; Wan Q; Deng X; Cao R; Xu X; Chen Z; Wang J; Huang T
    Chemosphere; 2019 Dec; 237():124490. PubMed ID: 31394451
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoreactivation of bacteriophages after UV disinfection: role of genome structure and impacts of UV source.
    Rodriguez RA; Bounty S; Beck S; Chan C; McGuire C; Linden KG
    Water Res; 2014 May; 55():143-9. PubMed ID: 24607520
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Difficulties in obtaining representative samples for compliance with the Ballast Water Management Convention.
    Carney KJ; Basurko OC; Pazouki K; Marsham S; Delany JE; Desai DV; Anil AC; Mesbahi E
    Mar Pollut Bull; 2013 Mar; 68(1-2):99-105. PubMed ID: 23337372
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review.
    Hijnen WA; Beerendonk EF; Medema GJ
    Water Res; 2006 Jan; 40(1):3-22. PubMed ID: 16386286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation and potential repair of Cryptosporidium parvum following low- and medium-pressure ultraviolet irradiation.
    Zimmer JL; Slawson RM; Huck PM
    Water Res; 2003 Aug; 37(14):3517-23. PubMed ID: 12834745
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Zooplankton sensitivity and phytoplankton regrowth for ballast water treatment with advanced oxidation processes.
    García-Garay J; Franco-Herrera A; Machuca-Martinez F
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35008-35014. PubMed ID: 29804250
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A comparison of six different ballast water treatment systems based on UV radiation, electrochlorination and chlorine dioxide.
    Stehouwer PP; Buma A; Peperzak L
    Environ Technol; 2015; 36(13-16):2094-104. PubMed ID: 25704551
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Physiological insights into enhanced lipid accumulation and temperature tolerance by Tetraselmis suecica ultraviolet mutants.
    Lo E; Arora N; Philippidis GP
    Sci Total Environ; 2022 Sep; 839():156361. PubMed ID: 35640758
    [TBL] [Abstract][Full Text] [Related]  

  • 29. UV fluences required for compliance with ballast water discharge standards using two approved methods for algal viability assessment.
    Lundgreen K; Holbech H; Pedersen KL; Petersen GI; Andreasen RR; George C; Drillet G; Andersen M
    Mar Pollut Bull; 2018 Oct; 135():1090-1100. PubMed ID: 30301006
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of UV-C and Vacuum-UV TiO2 Advanced Oxidation Processes on the Acute Mortality of Microalgae.
    McGivney E; Carlsson M; Gustafsson JP; Gorokhova E
    Photochem Photobiol; 2015; 91(5):1142-9. PubMed ID: 26031446
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of UV/Ag-TiO2/O3 advanced oxidation on unicellular green alga Dunaliella salina: implications for removal of invasive species from ballast water.
    Wu D; You H; Du J; Chen C; Jin D
    J Environ Sci (China); 2011; 23(3):513-9. PubMed ID: 21520822
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Disinfection by-products in ballast water treatment: an evaluation of regulatory data.
    Werschkun B; Sommer Y; Banerji S
    Water Res; 2012 Oct; 46(16):4884-901. PubMed ID: 22818950
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photoreactivation of fungal spores in water following UV disinfection and their control using UV-based advanced oxidation processes.
    Wen G; Deng X; Wan Q; Xu X; Huang T
    Water Res; 2019 Jan; 148():1-9. PubMed ID: 30340126
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recolonization by heterotrophic bacteria after UV irradiation or ozonation of seawater; a simulation of ballast water treatment.
    Hess-Erga OK; Blomvågnes-Bakke B; Vadstein O
    Water Res; 2010 Oct; 44(18):5439-49. PubMed ID: 20655082
    [TBL] [Abstract][Full Text] [Related]  

  • 35. UV disinfection of Giardia lamblia cysts in water.
    Linden KG; Shin GA; Faubert G; Cairns W; Sobsey MD
    Environ Sci Technol; 2002 Jun; 36(11):2519-22. PubMed ID: 12075814
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Assessment of DNA damage and repair in Mycobacterium terrae after exposure to UV irradiation.
    Bohrerova Z; Linden KG
    J Appl Microbiol; 2006 Nov; 101(5):995-1001. PubMed ID: 17040222
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect and mechanism of a High Gradient Magnetic Separation (HGMS) and Ultraviolet (UV) composite process on the inactivation of microbes in ballast water.
    Ren Z; Zhang L; Shi Y; Leng X; Shao J
    Mar Pollut Bull; 2016 Jul; 108(1-2):180-5. PubMed ID: 27126180
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Real-Time Monitoring of
    Moejes KB; Sherif RSR; Dürr S; Conlan S; Mason A; Korostynska O
    Toxics; 2018 Sep; 6(4):. PubMed ID: 30274216
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Synthesis of water suitable as the MEPC.174(58) G8 influent water for testing ballast water management systems.
    D'Agostino F; Del Core M; Cappello S; Mazzola S; Sprovieri M
    Environ Monit Assess; 2015 Oct; 187(10):642. PubMed ID: 26403705
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dynamic filtration with a perforated disk for dewatering of Tetraselmis suecica.
    Jung JY; Kim K; Choi SA; Shin H; Kim D; Bai SC; Chang YK; Han JI
    Environ Technol; 2017 Dec; 38(24):3102-3108. PubMed ID: 28142501
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.