These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31810710)

  • 21. Integrated micro-biochemical approach for phytoremediation of cadmium and lead contaminated soils using Gladiolus grandiflorus L cut flower.
    Mani D; Kumar C; Patel NK
    Ecotoxicol Environ Saf; 2016 Feb; 124():435-446. PubMed ID: 26615479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cadmium (Cd) Localization in Tissues of Cotton (Gossypium hirsutum L.), and Its Phytoremediation Potential for Cd-Contaminated Soils.
    Chen Z; Zhao Y; Fan L; Xing L; Yang Y
    Bull Environ Contam Toxicol; 2015 Dec; 95(6):784-9. PubMed ID: 26419249
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Growth Responses and Accumulation of Vanadium in Alfalfa, Milkvetch Root, and Swamp Morning Glory and Their Potential in Phytoremediation.
    Gan CD; Chen T; Yang JY
    Bull Environ Contam Toxicol; 2021 Sep; 107(3):559-564. PubMed ID: 34216229
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils.
    Mohsenzadeh F; Nasseri S; Mesdaghinia A; Nabizadeh R; Zafari D; Khodakaramian G; Chehregani A
    Ecotoxicol Environ Saf; 2010 May; 73(4):613-9. PubMed ID: 19932506
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Evaluation of chromium phyto-toxicity, phyto-tolerance, and phyto-accumulation using biofuel plants for effective phytoremediation.
    Amin H; Ahmed Arain B; Abbasi MS; Amin F; Jahangir TM; Soomro NU
    Int J Phytoremediation; 2019; 21(4):352-363. PubMed ID: 30638047
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Lithium, Vanadium and Chromium Uptake Ability of Brassica juncea from Lithium Mine Tailings.
    Elektorowicz M; Keropian Z
    Int J Phytoremediation; 2015; 17(1-6):521-8. PubMed ID: 25747238
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effects of liquid digestate on the valence state of vanadium in plant and soil and microbial community response.
    Aihemaiti A; Gao Y; Liu L; Yang G; Han S; Jiang J
    Environ Pollut; 2020 Oct; 265(Pt B):114916. PubMed ID: 32563117
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Assisted phytoremediation of heavy metal contaminated soil from a mined site with Typha latifolia and Chrysopogon zizanioides.
    Anning AK; Akoto R
    Ecotoxicol Environ Saf; 2018 Feb; 148():97-104. PubMed ID: 29031880
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil.
    Ma Y; Oliveira RS; Nai F; Rajkumar M; Luo Y; Rocha I; Freitas H
    J Environ Manage; 2015 Jun; 156():62-9. PubMed ID: 25796039
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Characterization of Cr Tolerance and Accumulation in
    Dong BB; Chen YY; Hui HX; Lu WJ; Yang XQ; Liu YF
    Huan Jing Ke Xue; 2016 Oct; 37(10):4044-4053. PubMed ID: 29964442
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Use of Maize (Zea mays L.) for phytomanagement of Cd-contaminated soils: a critical review.
    Rizwan M; Ali S; Qayyum MF; Ok YS; Zia-Ur-Rehman M; Abbas Z; Hannan F
    Environ Geochem Health; 2017 Apr; 39(2):259-277. PubMed ID: 27061410
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uptake and speciation of vanadium in the rhizosphere soils of rape (Brassica juncea L.).
    Tian LY; Yang JY; Huang JH
    Environ Sci Pollut Res Int; 2015 Jun; 22(12):9215-23. PubMed ID: 25586612
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cadmium and zinc bioaccumulation by
    McBride MB; Zhou Y
    Int J Phytoremediation; 2019; 21(12):1215-1224. PubMed ID: 31099251
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Physiological stress responses, mineral element uptake and phytoremediation potential of Morus alba L. in cadmium-contaminated soil.
    Zeng P; Guo Z; Xiao X; Peng C; Liu L; Yan D; He Y
    Ecotoxicol Environ Saf; 2020 Feb; 189():109973. PubMed ID: 31761549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lead toxicity in plants: Impacts and remediation.
    Zulfiqar U; Farooq M; Hussain S; Maqsood M; Hussain M; Ishfaq M; Ahmad M; Anjum MZ
    J Environ Manage; 2019 Nov; 250():109557. PubMed ID: 31545179
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advances in the application of plant growth-promoting rhizobacteria in phytoremediation of heavy metals.
    Tak HI; Ahmad F; Babalola OO
    Rev Environ Contam Toxicol; 2013; 223():33-52. PubMed ID: 23149811
    [TBL] [Abstract][Full Text] [Related]  

  • 37. An in situ study of growth of Lemongrass Cymbopogon flexuosus (Nees ex Steud.) W. Watson on varying concentration of Chromium (Cr
    Patra DK; Pradhan C; Patra HK
    Chemosphere; 2018 Feb; 193():793-799. PubMed ID: 29175407
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Identification of Sesbania sesban (L.) Merr. as an Efficient and Well Adapted Phytoremediation Tool for Cd Polluted Soils.
    Varun M; Ogunkunle CO; D'Souza R; Favas P; Paul M
    Bull Environ Contam Toxicol; 2017 Jun; 98(6):867-873. PubMed ID: 28456824
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Heavy metal uptake, translocation, and bioaccumulation studies of Triticum aestivum cultivated in contaminated dredged materials.
    Shumaker KL; Begonia G
    Int J Environ Res Public Health; 2005 Aug; 2(2):293-8. PubMed ID: 16705830
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils.
    Park JH; Lamb D; Paneerselvam P; Choppala G; Bolan N; Chung JW
    J Hazard Mater; 2011 Jan; 185(2-3):549-74. PubMed ID: 20974519
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.