BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

408 related articles for article (PubMed ID: 31811040)

  • 1. Metabolic and Genomic Traits of Phytobeneficial Phenazine-Producing
    Zboralski A; Biessy A; Savoie MC; Novinscak A; Filion M
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811040
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inhibition of Three Potato Pathogens by Phenazine-Producing
    Biessy A; Novinscak A; St-Onge R; Léger G; Zboralski A; Filion M
    mSphere; 2021 Jun; 6(3):e0042721. PubMed ID: 34077259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Diversity of phytobeneficial traits revealed by whole-genome analysis of worldwide-isolated phenazine-producing Pseudomonas spp.
    Biessy A; Novinscak A; Blom J; Léger G; Thomashow LS; Cazorla FM; Josic D; Filion M
    Environ Microbiol; 2019 Jan; 21(1):437-455. PubMed ID: 30421490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay between
    Zboralski A; Saadia H; Novinscak A; Filion M
    Microorganisms; 2022 Mar; 10(3):. PubMed ID: 35336236
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phenazines in plant-beneficial Pseudomonas spp.: biosynthesis, regulation, function and genomics.
    Biessy A; Filion M
    Environ Microbiol; 2018 Nov; 20(11):3905-3917. PubMed ID: 30159978
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gnotobiotic system for studying rhizosphere colonization by plant growth-promoting Pseudomonas bacteria.
    Simons M; van der Bij AJ; Brand I; de Weger LA; Wijffelman CA; Lugtenberg BJ
    Mol Plant Microbe Interact; 1996 Sep; 9(7):600-7. PubMed ID: 8810075
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inactivation of gacS does not affect the competitiveness of Pseudomonas chlororaphis in the Arabidopsis thaliana rhizosphere.
    Schmidt-Eisenlohr H; Gast A; Baron C
    Appl Environ Microbiol; 2003 Mar; 69(3):1817-26. PubMed ID: 12620875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparative genomic analysis of four representative plant growth-promoting rhizobacteria in Pseudomonas.
    Shen X; Hu H; Peng H; Wang W; Zhang X
    BMC Genomics; 2013 Apr; 14():271. PubMed ID: 23607266
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Root colonization by phenazine-1-carboxamide-producing bacterium Pseudomonas chlororaphis PCL1391 is essential for biocontrol of tomato foot and root rot.
    Chin-A-Woeng TF; Bloemberg GV; Mulders IH; Dekkers LC; Lugtenberg BJ
    Mol Plant Microbe Interact; 2000 Dec; 13(12):1340-5. PubMed ID: 11106026
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Population structure and diversity of phenazine-1-carboxylic acid producing fluorescent Pseudomonas spp. from dryland cereal fields of central Washington State (USA).
    Parejko JA; Mavrodi DV; Mavrodi OV; Weller DM; Thomashow LS
    Microb Ecol; 2012 Jul; 64(1):226-41. PubMed ID: 22383119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-Acylhomoserine lactone quorum-sensing signalling in antagonistic phenazine-producing Pseudomonas isolates from the red cocoyam rhizosphere.
    De Maeyer K; D'aes J; Hua GKH; Perneel M; Vanhaecke L; Noppe H; Höfte M
    Microbiology (Reading); 2011 Feb; 157(Pt 2):459-472. PubMed ID: 21071496
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The competitiveness of Pseudomonas chlororaphis carrying pJP4 is reduced in the Arabidopsis thaliana rhizosphere.
    Schmidt-Eisenlohr H; Baron C
    Appl Environ Microbiol; 2003 Mar; 69(3):1827-31. PubMed ID: 12620876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp.
    Jaaffar AKM; Parejko JA; Paulitz TC; Weller DM; Thomashow LS
    Phytopathology; 2017 Jun; 107(6):692-703. PubMed ID: 28383281
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic factors involved in rhizosphere colonization by phytobeneficial
    Zboralski A; Filion M
    Comput Struct Biotechnol J; 2020; 18():3539-3554. PubMed ID: 33304453
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Pseudomonas-based biocontrol consortium with effective root colonization and extended beneficial side effects for plants under high-temperature stress.
    Tienda S; Vida C; Villar-Moreno R; de Vicente A; Cazorla FM
    Microbiol Res; 2024 Aug; 285():127761. PubMed ID: 38761488
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Introduction of the phzH gene of Pseudomonas chlororaphis PCL1391 extends the range of biocontrol ability of phenazine-1-carboxylic acid-producing Pseudomonas spp. strains.
    Chin-A-Woeng TF; Thomas-Oates JE; Lugtenberg BJ; Bloemberg GV
    Mol Plant Microbe Interact; 2001 Aug; 14(8):1006-15. PubMed ID: 11497461
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocontrol of Potato Common Scab is Associated with High Pseudomonas fluorescens LBUM223 Populations and Phenazine-1-Carboxylic Acid Biosynthetic Transcript Accumulation in the Potato Geocaulosphere.
    Arseneault T; Goyer C; Filion M
    Phytopathology; 2016 Sep; 106(9):963-70. PubMed ID: 27088392
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phenazines and their role in biocontrol by Pseudomonas bacteria.
    Chin-A-Woeng TFC; Bloemberg GV; Lugtenberg BJJ
    New Phytol; 2003 Mar; 157(3):503-523. PubMed ID: 33873412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In Tuber Biocontrol of Potato Late Blight by a Collection of Phenazine-1-Carboxylic Acid-Producing
    Léger G; Novinscak A; Biessy A; Lamarre S; Filion M
    Microorganisms; 2021 Dec; 9(12):. PubMed ID: 34946127
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Genome-Wide Screen Identifies Genes in Rhizosphere-Associated
    Liu Z; Beskrovnaya P; Melnyk RA; Hossain SS; Khorasani S; O'Sullivan LR; Wiesmann CL; Bush J; Richard JD; Haney CH
    mBio; 2018 Nov; 9(6):. PubMed ID: 30401768
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 21.