BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31811042)

  • 1. Lipopolysaccharide Stimulates the Growth of Bacteria That Contribute to Ruminal Acidosis.
    Dai X; Hackmann TJ; Lobo RR; Faciola AP
    Appl Environ Microbiol; 2020 Feb; 86(4):. PubMed ID: 31811042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of ruminal lipopolysaccharides on growth and fermentation end products of pure cultured bacteria.
    Sarmikasoglou E; Ferrell J; Vinyard JR; Flythe MD; Tuanyok A; Faciola AP
    Sci Rep; 2022 Sep; 12(1):15932. PubMed ID: 36151241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of thymol on ruminal microorganisms.
    Evans JD; Martin SA
    Curr Microbiol; 2000 Nov; 41(5):336-40. PubMed ID: 11014870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ruminal acidosis, bacterial changes, and lipopolysaccharides.
    Monteiro HF; Faciola AP
    J Anim Sci; 2020 Aug; 98(8):. PubMed ID: 32761212
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active dry Saccharomyces cerevisiae can alleviate the effect of subacute ruminal acidosis in lactating dairy cows.
    AlZahal O; Dionissopoulos L; Laarman AH; Walker N; McBride BW
    J Dairy Sci; 2014 Dec; 97(12):7751-63. PubMed ID: 25282426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Potential influence of dairy propionibacteria on the growth and acid metabolism of Streptococcus bovis and Megasphaera elsdenii.
    Luo J; Ranadheera CS; King S; Evans CA; Baines SK
    Benef Microbes; 2017 Feb; 8(1):111-119. PubMed ID: 27824275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ambient pH regulates lactate catabolism pathway of the ruminal Megasphaera elsdenii BE2-2083 and Selenomonas ruminantium HD4.
    Fan Y; Xia G; Jin Y; Wang H
    J Appl Microbiol; 2022 Apr; 132(4):2661-2672. PubMed ID: 35104035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of laidlomycin propionate and monensin on glucose utilization and nutrient transport by Streptococcus bovis and Selenomonas ruminantium.
    Wampler JL; Martin SA; Hill GM
    J Anim Sci; 1998 Oct; 76(10):2730-6. PubMed ID: 9814916
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of lipopolysaccharide dosing on bacterial community composition and fermentation in a dual-flow continuous culture system.
    Dai X; Paula EM; Lelis ALJ; Silva LG; Brandao VLN; Monteiro HF; Fan P; Poulson SR; Jeong KC; Faciola AP
    J Dairy Sci; 2019 Jan; 102(1):334-350. PubMed ID: 30343924
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of extracellular lactate on growth of rumen lactate producers.
    Simunek J; Marounek M
    Arch Tierernahr; 1994; 46(3):277-81. PubMed ID: 7619002
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protozoa involved in butyric rather than lactic fermentative pattern during latent acidosis in sheep.
    Brossard L; Martin C; Chaucheyras-Durand F; Michalet-Doreau B
    Reprod Nutr Dev; 2004; 44(3):195-206. PubMed ID: 15460159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Subacute ruminal acidosis affects fermentation and endotoxin concentration in the rumen and relative expression of the CD14/TLR4/MD2 genes involved in lipopolysaccharide systemic immune response in dairy cows.
    Stefanska B; Człapa W; Pruszynska-Oszmałek E; Szczepankiewicz D; Fievez V; Komisarek J; Stajek K; Nowak W
    J Dairy Sci; 2018 Feb; 101(2):1297-1310. PubMed ID: 29153518
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of partial mixed rations and supplement amounts on milk production and composition, ruminal fermentation, bacterial communities, and ruminal acidosis.
    Golder HM; Denman SE; McSweeney C; Wales WJ; Auldist MJ; Wright MM; Marett LC; Greenwood JS; Hannah MC; Celi P; Bramley E; Lean IJ
    J Dairy Sci; 2014 Sep; 97(9):5763-85. PubMed ID: 24997657
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficacy of Megasphaera elsdenii inoculation in subacute ruminal acidosis in cattle.
    Arik HD; Gulsen N; Hayirli A; Alatas MS
    J Anim Physiol Anim Nutr (Berl); 2019 Mar; 103(2):416-426. PubMed ID: 30588673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rumen microbiome composition determined using two nutritional models of subacute ruminal acidosis.
    Khafipour E; Li S; Plaizier JC; Krause DO
    Appl Environ Microbiol; 2009 Nov; 75(22):7115-24. PubMed ID: 19783747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphoenolpyruvate-dependent phosphorylation of hexoses by ruminal bacteria: evidence for the phosphotransferase transport system.
    Martin SA; Russell JB
    Appl Environ Microbiol; 1986 Dec; 52(6):1348-52. PubMed ID: 3789722
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of acarbose on ruminal fermentation, blood metabolites and microbial profile involved in ruminal acidosis in lactating cows fed a high-carbohydrate ration.
    Blanch M; Calsamiglia S; Devant M; Bach A
    J Dairy Res; 2010 Feb; 77(1):123-8. PubMed ID: 20053317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of ruminal bacteria in the production and utilization of maltooligosaccharides from starch.
    Cotta MA
    Appl Environ Microbiol; 1992 Jan; 58(1):48-54. PubMed ID: 1539992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population shifts in some faeces and rumen bacteria profiles and subsequent blood LPS and lactate concentrations in lambs in the early period of subacute ruminal acidosis.
    Nikvand AA; Nouri M; Gharibi D; Rakhshandeh R
    Vet Med Sci; 2023 Mar; 9(2):891-898. PubMed ID: 36286253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ruminal lipopolysaccharide concentration and inflammatory response during grain-induced subacute ruminal acidosis in dairy cows.
    Gozho GN; Krause DO; Plaizier JC
    J Dairy Sci; 2007 Feb; 90(2):856-66. PubMed ID: 17235162
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.