BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 31811132)

  • 1. In silico prediction of high-resolution Hi-C interaction matrices.
    Zhang S; Chasman D; Knaack S; Roy S
    Nat Commun; 2019 Dec; 10(1):5449. PubMed ID: 31811132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ClusterTAD: an unsupervised machine learning approach to detecting topologically associated domains of chromosomes from Hi-C data.
    Oluwadare O; Cheng J
    BMC Bioinformatics; 2017 Nov; 18(1):480. PubMed ID: 29137603
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data.
    Carty M; Zamparo L; Sahin M; González A; Pelossof R; Elemento O; Leslie CS
    Nat Commun; 2017 May; 8():15454. PubMed ID: 28513628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 7C: Computational Chromosome Conformation Capture by Correlation of ChIP-seq at CTCF motifs.
    Ibn-Salem J; Andrade-Navarro MA
    BMC Genomics; 2019 Oct; 20(1):777. PubMed ID: 31653198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A predictive modeling approach for cell line-specific long-range regulatory interactions.
    Roy S; Siahpirani AF; Chasman D; Knaack S; Ay F; Stewart R; Wilson M; Sridharan R
    Nucleic Acids Res; 2015 Oct; 43(18):8694-712. PubMed ID: 26338778
    [TBL] [Abstract][Full Text] [Related]  

  • 6. HiC-ACT: improved detection of chromatin interactions from Hi-C data via aggregated Cauchy test.
    Lagler TM; Abnousi A; Hu M; Yang Y; Li Y
    Am J Hum Genet; 2021 Feb; 108(2):257-268. PubMed ID: 33545029
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic sequence-based prediction of long-range chromatin interactions suggests a potential role of short tandem repeat sequences in genome organization.
    Nikumbh S; Pfeifer N
    BMC Bioinformatics; 2017 Apr; 18(1):218. PubMed ID: 28420341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HiC-DC+ enables systematic 3D interaction calls and differential analysis for Hi-C and HiChIP.
    Sahin M; Wong W; Zhan Y; Van Deynze K; Koche R; Leslie CS
    Nat Commun; 2021 Jun; 12(1):3366. PubMed ID: 34099725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MrTADFinder: A network modularity based approach to identify topologically associating domains in multiple resolutions.
    Yan KK; Lou S; Gerstein M
    PLoS Comput Biol; 2017 Jul; 13(7):e1005647. PubMed ID: 28742097
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of computational methods for Hi-C data analysis.
    Forcato M; Nicoletti C; Pal K; Livi CM; Ferrari F; Bicciato S
    Nat Methods; 2017 Jul; 14(7):679-685. PubMed ID: 28604721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep Learning of Sequence Patterns for CCCTC-Binding Factor-Mediated Chromatin Loop Formation.
    Kuang S; Wang L
    J Comput Biol; 2021 Feb; 28(2):133-145. PubMed ID: 33232622
    [No Abstract]   [Full Text] [Related]  

  • 12. Integrative characterization of G-Quadruplexes in the three-dimensional chromatin structure.
    Hou Y; Li F; Zhang R; Li S; Liu H; Qin ZS; Sun X
    Epigenetics; 2019 Sep; 14(9):894-911. PubMed ID: 31177910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine learning polymer models of three-dimensional chromatin organization in human lymphoblastoid cells.
    Al Bkhetan Z; Kadlof M; Kraft A; Plewczynski D
    Methods; 2019 Aug; 166():83-90. PubMed ID: 30853548
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CTCF-Mediated Chromatin Loops between Promoter and Gene Body Regulate Alternative Splicing across Individuals.
    Ruiz-Velasco M; Kumar M; Lai MC; Bhat P; Solis-Pinson AB; Reyes A; Kleinsorg S; Noh KM; Gibson TJ; Zaugg JB
    Cell Syst; 2017 Dec; 5(6):628-637.e6. PubMed ID: 29199022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational methods for predicting 3D genomic organization from high-resolution chromosome conformation capture data.
    MacKay K; Kusalik A
    Brief Funct Genomics; 2020 Jul; 19(4):292-308. PubMed ID: 32353112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An integrated 3-Dimensional Genome Modeling Engine for data-driven simulation of spatial genome organization.
    Szałaj P; Tang Z; Michalski P; Pietal MJ; Luo OJ; Sadowski M; Li X; Radew K; Ruan Y; Plewczynski D
    Genome Res; 2016 Dec; 26(12):1697-1709. PubMed ID: 27789526
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring chromatin hierarchical organization via Markov State Modelling.
    Tan ZW; Guarnera E; Berezovsky IN
    PLoS Comput Biol; 2018 Dec; 14(12):e1006686. PubMed ID: 30596637
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A subset of topologically associating domains fold into mesoscale core-periphery networks.
    Huang H; Chen ST; Titus KR; Emerson DJ; Bassett DS; Phillips-Cremins JE
    Sci Rep; 2019 Jul; 9(1):9526. PubMed ID: 31266973
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Integrative analysis of the 3D genome structure reveals that CTCF maintains the properties of mouse female germline stem cells.
    Tian GG; Zhao X; Hou C; Xie W; Li X; Wang Y; Wang L; Li H; Zhao X; Li J; Wu J
    Cell Mol Life Sci; 2022 Jan; 79(1):22. PubMed ID: 34981210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative prediction of enhancer-promoter interactions.
    Belokopytova PS; Nuriddinov MA; Mozheiko EA; Fishman D; Fishman V
    Genome Res; 2020 Jan; 30(1):72-84. PubMed ID: 31804952
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.