These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 31811183)
1. Particle-size dependent bactericidal activity of magnesium oxide against Xanthomonas perforans and bacterial spot of tomato. Liao YY; Strayer-Scherer A; White JC; De La Torre-Roche R; Ritchie L; Colee J; Vallad GE; Freeman J; Jones JB; Paret ML Sci Rep; 2019 Dec; 9(1):18530. PubMed ID: 31811183 [TBL] [Abstract][Full Text] [Related]
2. Nano-Magnesium Oxide: A Novel Bactericide Against Copper-Tolerant Xanthomonas perforans Causing Tomato Bacterial Spot. Liao YY; Strayer-Scherer AL; White J; Mukherjee A; De La Torre-Roche R; Ritchie L; Colee J; Vallad GE; Freeman JH; Jones JB; Paret ML Phytopathology; 2019 Jan; 109(1):52-62. PubMed ID: 30070617 [TBL] [Abstract][Full Text] [Related]
3. Advanced Copper Composites Against Copper-Tolerant Xanthomonas perforans and Tomato Bacterial Spot. Strayer-Scherer A; Liao YY; Young M; Ritchie L; Vallad GE; Santra S; Freeman JH; Clark D; Jones JB; Paret ML Phytopathology; 2018 Feb; 108(2):196-205. PubMed ID: 28990482 [TBL] [Abstract][Full Text] [Related]
4. Magnesium Oxide Nanomaterial, an Alternative for Commercial Copper Bactericides: Field-Scale Tomato Bacterial Spot Disease Management and Total and Bioavailable Metal Accumulation in Soil. Liao YY; Huang Y; Carvalho R; Choudhary M; Da Silva S; Colee J; Huerta A; Vallad GE; Freeman JH; Jones JB; Keller A; Paret ML Environ Sci Technol; 2021 Oct; 55(20):13561-13570. PubMed ID: 34291924 [TBL] [Abstract][Full Text] [Related]
5. Bactericidal Activity of Copper-Zinc Hybrid Nanoparticles on Copper-Tolerant Xanthomonas perforans. Carvalho R; Duman K; Jones JB; Paret ML Sci Rep; 2019 Dec; 9(1):20124. PubMed ID: 31882706 [TBL] [Abstract][Full Text] [Related]
6. Photocatalysis: effect of light-activated nanoscale formulations of TiO(2) on Xanthomonas perforans and control of bacterial spot of tomato. Paret ML; Vallad GE; Averett DR; Jones JB; Olson SM Phytopathology; 2013 Mar; 103(3):228-36. PubMed ID: 23190116 [TBL] [Abstract][Full Text] [Related]
7. Potential of Novel Magnesium Nanomaterials to Manage Bacterial Spot Disease of Tomato in Greenhouse and Field Conditions. Liao YY; Pereira J; Huang Z; Fan Q; Santra S; White JC; De La Torre-Roche R; Da Silva S; Vallad GE; Freeman JH; Jones JB; Paret ML Plants (Basel); 2023 Apr; 12(9):. PubMed ID: 37176889 [TBL] [Abstract][Full Text] [Related]
8. Nanotechnology in plant disease management: DNA-directed silver nanoparticles on graphene oxide as an antibacterial against Xanthomonas perforans. Ocsoy I; Paret ML; Ocsoy MA; Kunwar S; Chen T; You M; Tan W ACS Nano; 2013 Oct; 7(10):8972-80. PubMed ID: 24016217 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a Small-Molecule Compound, N-Acetylcysteine, for the Management of Bacterial Spot of Tomato Caused by Copper-Resistant Qiao K; Liu Q; Xia Y; Zhang S Plant Dis; 2021 Jan; 105(1):108-113. PubMed ID: 33175655 [TBL] [Abstract][Full Text] [Related]
10. Occurrence of copper-resistant strains and a shift in Xanthomonas spp. causing tomato bacterial spot in Ontario. Abbasi PA; Khabbaz SE; Weselowski B; Zhang L Can J Microbiol; 2015 Oct; 61(10):753-61. PubMed ID: 26308592 [TBL] [Abstract][Full Text] [Related]
11. Controllable preparation of Nano-MgO and investigation of its bactericidal properties. Huang L; Li DQ; Lin YJ; Wei M; Evans DG; Duan X J Inorg Biochem; 2005 May; 99(5):986-93. PubMed ID: 15833320 [TBL] [Abstract][Full Text] [Related]
12. The Green Synthesis of MgO Nano-Flowers Using Abdallah Y; Ogunyemi SO; Abdelazez A; Zhang M; Hong X; Ibrahim E; Hossain A; Fouad H; Li B; Chen J Biomed Res Int; 2019; 2019():5620989. PubMed ID: 30906776 [TBL] [Abstract][Full Text] [Related]
13. Random peptide mixtures as new crop protection agents. Topman S; Tamir-Ariel D; Bochnic-Tamir H; Stern Bauer T; Shafir S; Burdman S; Hayouka Z Microb Biotechnol; 2018 Nov; 11(6):1027-1036. PubMed ID: 29488347 [TBL] [Abstract][Full Text] [Related]
14. Independent Evolution with the Gene Flux Originating from Multiple Newberry EA; Bhandari R; Minsavage GV; Timilsina S; Jibrin MO; Kemble J; Sikora EJ; Jones JB; Potnis N Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375496 [No Abstract] [Full Text] [Related]
15. Population Dynamics of Xanthomonads Associated with Bacterial Spot of Tomato and Pepper during 27 Years across Taiwan. Burlakoti RR; Hsu CF; Chen JR; Wang JF Plant Dis; 2018 Jul; 102(7):1348-1356. PubMed ID: 30673574 [TBL] [Abstract][Full Text] [Related]
16. Potential and Metabolic Pathways of Eugenol in the Management of Jibrin MO; Liu Q; Garrett TJ; Jones JB; Zhang S Int J Mol Sci; 2022 Nov; 23(23):. PubMed ID: 36498976 [TBL] [Abstract][Full Text] [Related]
17. Molecular Epidemiology of Abrahamian P; Timilsina S; Minsavage GV; Potnis N; Jones JB; Goss EM; Vallad GE Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31253682 [TBL] [Abstract][Full Text] [Related]
19. Antimicrobial Magnesium Hydroxide Nanoparticles As an Alternative to Cu Biocide for Crop Protection. Huang Z; Rajasekaran P; Ozcan A; Santra S J Agric Food Chem; 2018 Aug; 66(33):8679-8686. PubMed ID: 30025447 [TBL] [Abstract][Full Text] [Related]
20. Effectiveness of tailocins produced by Pseudomonas fluorescens SF4c in controlling the bacterial-spot disease in tomatoes caused by Xanthomonas vesicatoria. Príncipe A; Fernandez M; Torasso M; Godino A; Fischer S Microbiol Res; 2018; 212-213():94-102. PubMed ID: 29853172 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]