These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 31811605)
21. Hydrogen-rich gas production via fast pyrolysis of biophysical dried sludge: Effect of particle size and moisture content on product yields and syngas composition. Han R; Liu J; Zhao C; Li Y; Chen A Waste Manag Res; 2016 Jun; 34(6):572-7. PubMed ID: 27118735 [TBL] [Abstract][Full Text] [Related]
22. Dewatering and granulation of sewage sludge by biophysical drying and thermo-degradation performance of prepared sludge particles during succedent fast pyrolysis. Han R; Liu J; Zhang Y; Fan X; Lu W; Wang H Bioresour Technol; 2012 Mar; 107():429-36. PubMed ID: 22230778 [TBL] [Abstract][Full Text] [Related]
23. Distribution of Hg during sewage sludge and municipal solid waste Co-pyrolysis: Influence of multiple factors. Sun Y; Tao J; Chen G; Yan B; Cheng Z Waste Manag; 2020 Apr; 107():276-284. PubMed ID: 32320940 [TBL] [Abstract][Full Text] [Related]
24. Co-pyrolysis of sewage sludge and waste tobacco stem: Gas products analysis, pyrolysis kinetics, artificial neural network modeling, and synergistic effects. Ma C; Zhang F; Hu J; Wang H; Yang S; Liu H Bioresour Technol; 2023 Dec; 389():129816. PubMed ID: 37793553 [TBL] [Abstract][Full Text] [Related]
25. Effects of temperature and composite alumina on pyrolysis of sewage sludge. Sun Y; Jin B; Wu W; Zuo W; Zhang Y; Zhang Y; Huang Y J Environ Sci (China); 2015 Apr; 30():1-8. PubMed ID: 25872704 [TBL] [Abstract][Full Text] [Related]
26. Comprehensive utilization of the pyrolysis products from sewage sludge. Xu WY; Wu D Environ Technol; 2015; 36(13-16):1731-44. PubMed ID: 25609547 [TBL] [Abstract][Full Text] [Related]
27. Thermal characterization and syngas production from the pyrolysis of biophysical dried and traditional thermal dried sewage sludge. Han R; Zhao C; Liu J; Chen A; Wang H Bioresour Technol; 2015 Dec; 198():276-82. PubMed ID: 26402870 [TBL] [Abstract][Full Text] [Related]
28. Beneficial synergetic effect on gas production during co-pyrolysis of sewage sludge and biomass in a vacuum reactor. Zhang W; Yuan C; Xu J; Yang X Bioresour Technol; 2015 May; 183():255-8. PubMed ID: 25728344 [TBL] [Abstract][Full Text] [Related]
29. Effect of catalysts on distribution of polycyclic-aromatic hydrocarbon (PAHs) in bio-oils from the pyrolysis of dewatered sewage sludge at high and low temperatures. Hu Y; Yu W; Wibowo H; Xia Y; Lu Y; Yan M Sci Total Environ; 2019 Jun; 667():263-270. PubMed ID: 30831366 [TBL] [Abstract][Full Text] [Related]
30. A combined two-stage process of pyrolysis and catalytic cracking of municipal solid waste for the production of syngas and solid refuse-derived fuels. Veses A; Sanahuja-Parejo O; Callén MS; Murillo R; García T Waste Manag; 2020 Jan; 101():171-179. PubMed ID: 31614284 [TBL] [Abstract][Full Text] [Related]
31. Catalytic oxidation of NO at ambient temperature over the chars from pyrolysis of sewage sludge. Deng W; Tao C; Cobb K; Zhou H; Su Y; Ruan R Chemosphere; 2020 Jul; 251():126429. PubMed ID: 32443251 [TBL] [Abstract][Full Text] [Related]
32. Release of hydrogen sulfide during microwave pyrolysis of sewage sludge: Effect of operating parameters and mechanism. Zhang J; Zuo W; Tian Y; Yin L; Gong Z; Zhang J J Hazard Mater; 2017 Jun; 331():117-122. PubMed ID: 28249180 [TBL] [Abstract][Full Text] [Related]
33. Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system. Zhou N; Zhou J; Dai L; Guo F; Wang Y; Li H; Deng W; Lei H; Chen P; Liu Y; Ruan R Bioresour Technol; 2020 Oct; 314():123756. PubMed ID: 32629378 [TBL] [Abstract][Full Text] [Related]
34. Clay-sewage sludge co-pyrolysis. A TG-MS and Py-GC study on potential advantages afforded by the presence of clay in the pyrolysis of wastewater sewage sludge. Ischia M; Dal Maschio R; Grigiante M; Baratieri M Waste Manag; 2011 Jan; 31(1):71-7. PubMed ID: 20605088 [TBL] [Abstract][Full Text] [Related]
35. A Dynamic Recurrent Neural Network for Predicting Higher Heating Value of Biomass. Aghel B; Yahya SI; Rezaei A; Alobaid F Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982849 [TBL] [Abstract][Full Text] [Related]
37. Tar-free fuel gas production from high temperature pyrolysis of sewage sludge. Zhang L; Xiao B; Hu Z; Liu S; Cheng G; He P; Sun L Waste Manag; 2014 Jan; 34(1):180-4. PubMed ID: 24220150 [TBL] [Abstract][Full Text] [Related]
38. Coupled heating/acidification pretreatment of chemical sludge for dewatering by using waste sulfuric acid at low temperature. Bian B; Zhang L; Zhang Q; Zhang S; Yang Z; Yang W Chemosphere; 2018 Aug; 205():260-266. PubMed ID: 29702345 [TBL] [Abstract][Full Text] [Related]
39. Char and tar formation during hydrothermal gasification of dewatered sewage sludge in subcritical and supercritical water: Influence of reaction parameters and lumped reaction kinetics. Wang C; Zhu W; Zhang H; Chen C; Fan X; Su Y Waste Manag; 2019 Dec; 100():57-65. PubMed ID: 31520913 [TBL] [Abstract][Full Text] [Related]
40. Investigation on the evolution of N-containing organic compounds during pyrolysis of sewage sludge. Tian K; Liu WJ; Qian TT; Jiang H; Yu HQ Environ Sci Technol; 2014 Sep; 48(18):10888-96. PubMed ID: 25141119 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]