These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 31811605)

  • 41. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.
    Xie Q; Peng P; Liu S; Min M; Cheng Y; Wan Y; Li Y; Lin X; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2014 Nov; 172():162-168. PubMed ID: 25260179
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Comparative assessment of municipal sewage sludge incineration, gasification and pyrolysis for a sustainable sludge-to-energy management in Greece.
    Samolada MC; Zabaniotou AA
    Waste Manag; 2014 Feb; 34(2):411-20. PubMed ID: 24290971
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Self-heating co-pyrolysis of excessive activated sludge with waste biomass: energy balance and sludge reduction.
    Ding HS; Jiang H
    Bioresour Technol; 2013 Apr; 133():16-22. PubMed ID: 23410532
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The characteristic and evaluation method of fast pyrolysis of microalgae to produce syngas.
    Hu Z; Ma X; Li L
    Bioresour Technol; 2013 Jul; 140():220-6. PubMed ID: 23693148
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Kinetic analysis of slow pyrolysis of oily sludge at medium temperature (350 ℃-650 ℃) and the effects of heating rate on pyrolysis.
    Song S; Liu X; Jiang X; Peng T; Gao H; Xu Z
    Environ Technol; 2024 Sep; 45(23):4900-4913. PubMed ID: 37950631
    [No Abstract]   [Full Text] [Related]  

  • 46. Stability of biochar derived from banana peel through pyrolysis as alternative source of nutrient in soil: feedforward neural network modelling study.
    Bong HK; Selvarajoo A; Arumugasamy SK
    Environ Monit Assess; 2022 Jan; 194(2):70. PubMed ID: 34994870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Elucidating the effect of process parameters on the production of hydrogen-rich syngas by biomass and coal Co-gasification techniques: A multi-criteria modeling approach.
    Bahadar A; Kanthasamy R; Sait HH; Zwawi M; Algarni M; Ayodele BV; Cheng CK; Wei LJ
    Chemosphere; 2022 Jan; 287(Pt 1):132052. PubMed ID: 34478965
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge: Biochar properties and environmental risk from metals.
    Jin J; Wang M; Cao Y; Wu S; Liang P; Li Y; Zhang J; Zhang J; Wong MH; Shan S; Christie P
    Bioresour Technol; 2017 Mar; 228():218-226. PubMed ID: 28064134
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Simulation analysis and ternary diagram of municipal solid waste pyrolysis and gasification based on the equilibrium model.
    Deng N; Zhang A; Zhang Q; He G; Cui W; Chen G; Song C
    Bioresour Technol; 2017 Jul; 235():371-379. PubMed ID: 28384590
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Characterization of char from slow pyrolysis of sewage sludge.
    Xu WY; Wu D
    Water Sci Technol; 2016; 73(10):2370-8. PubMed ID: 27191557
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Energy recovery from syngas and pyrolysis wastewaters with anaerobic mixed cultures.
    Robazza A; Neumann A
    Bioresour Bioprocess; 2024 Jul; 11(1):76. PubMed ID: 39066992
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Digestion of high rate activated sludge coupled to biochar formation for soil improvement in the tropics.
    Nansubuga I; Banadda N; Ronsse F; Verstraete W; Rabaey K
    Water Res; 2015 Sep; 81():216-22. PubMed ID: 26072019
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Screw pyrolysis technology for sewage sludge treatment.
    Tomasi Morgano M; Leibold H; Richter F; Stapf D; Seifert H
    Waste Manag; 2018 Mar; 73():487-495. PubMed ID: 28601579
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Prediction of MSW pyrolysis products based on a deep artificial neural network.
    Zang Y; Ge S; Lin Y; Yin L; Chen D
    Waste Manag; 2024 Mar; 176():159-168. PubMed ID: 38281347
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An evaluation of tannery industry wastewater treatment sludge gasification by artificial neural network modeling.
    Ongen A; Ozcan HK; Arayıcı S
    J Hazard Mater; 2013 Dec; 263 Pt 2():361-6. PubMed ID: 23608748
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Energy recovery from sewage sludge: Product characteristics, heating value prediction and reaction kinetics.
    Huang YF; Chiueh PT; Lo SL
    Chemosphere; 2021 Apr; 268():128783. PubMed ID: 33168284
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Microwave pyrolysis of oily sludge with activated carbon.
    Chen YR
    Environ Technol; 2016 Dec; 37(24):3139-45. PubMed ID: 27133358
    [TBL] [Abstract][Full Text] [Related]  

  • 58. [Analysis on the target product from sewage sludge pyrolysis and experiments on using the char for enhancing plant cultivation].
    Song XD; Chen DZ; Wang ZH; He W
    Huan Jing Ke Xue; 2011 Sep; 32(9):2604-9. PubMed ID: 22165228
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Artificial Neural Network Study on the Pyrolysis of Polypropylene with a Sensitivity Analysis.
    Dubdub I
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771796
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Integrating Taguchi method and artificial neural network for predicting and maximizing biofuel production via torrefaction and pyrolysis.
    Aniza R; Chen WH; Yang FC; Pugazhendh A; Singh Y
    Bioresour Technol; 2022 Jan; 343():126140. PubMed ID: 34662739
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.