These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

321 related articles for article (PubMed ID: 31811793)

  • 21. An efficient polyenergetic SART (pSART) reconstruction algorithm for quantitative myocardial CT perfusion.
    Lin Y; Samei E
    Med Phys; 2014 Feb; 41(2):021911. PubMed ID: 24506632
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequentially reweighted TV minimization for CT metal artifact reduction.
    Zhang X; Xing L
    Med Phys; 2013 Jul; 40(7):071907. PubMed ID: 23822444
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-dose CT imaging of a total hip arthroplasty phantom using model-based iterative reconstruction and orthopedic metal artifact reduction.
    Wellenberg RH; Boomsma MF; van Osch JA; Vlassenbroek A; Milles J; Edens MA; Streekstra GJ; Slump CH; Maas M
    Skeletal Radiol; 2017 May; 46(5):623-632. PubMed ID: 28204857
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dual energy CT with one full scan and a second sparse-view scan using structure preserving iterative reconstruction (SPIR).
    Wang T; Zhu L
    Phys Med Biol; 2016 Sep; 61(18):6684-6706. PubMed ID: 27552793
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Metal artifact reduction method based on a constrained beam-hardening estimator for polychromatic x-ray CT.
    Hur J; Kim D; Shin YG; Lee H
    Phys Med Biol; 2021 Mar; 66(6):065025. PubMed ID: 33498020
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography.
    Wang J; Li T; Lu H; Liang Z
    IEEE Trans Med Imaging; 2006 Oct; 25(10):1272-83. PubMed ID: 17024831
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new approach for reducing beam hardening artifacts in polychromatic X-ray computed tomography using more accurate prior image.
    Wang H; Xu Y; Shi H
    J Xray Sci Technol; 2018; 26(4):593-602. PubMed ID: 29562575
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Technical Note: Evaluation of a 160-mm/256-row CT scanner for whole-heart quantitative myocardial perfusion imaging.
    So A; Imai Y; Nett B; Jackson J; Nett L; Hsieh J; Wisenberg G; Teefy P; Yadegari A; Islam A; Lee TY
    Med Phys; 2016 Aug; 43(8):4821. PubMed ID: 27487900
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pixel-wise estimation of noise statistics on iterative CT reconstruction from a single scan.
    Wang T; Zhu L
    Med Phys; 2017 Jul; 44(7):3525-3533. PubMed ID: 28444799
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Iterative reconstruction for x-ray computed tomography using prior-image induced nonlocal regularization.
    Zhang H; Huang J; Ma J; Bian Z; Feng Q; Lu H; Liang Z; Chen W
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2367-2378. PubMed ID: 24235272
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Reducing CT radiation dose with iterative reconstruction algorithms: the influence of scan and reconstruction parameters on image quality and CTDIvol.
    Klink T; Obmann V; Heverhagen J; Stork A; Adam G; Begemann P
    Eur J Radiol; 2014 Sep; 83(9):1645-54. PubMed ID: 25037931
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Technical Note: Evaluation of an iterative reconstruction algorithm for optical CT radiation dosimetry.
    Dekker KH; Battista JJ; Jordan KJ
    Med Phys; 2017 Dec; 44(12):6678-6689. PubMed ID: 29072308
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A comparison of linear interpolation models for iterative CT reconstruction.
    Hahn K; Schöndube H; Stierstorfer K; Hornegger J; Noo F
    Med Phys; 2016 Dec; 43(12):6455. PubMed ID: 27908185
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ordered subsets Non-Local means constrained reconstruction for sparse view cone beam CT system.
    Hu Y; Wang Z; Xie L; Luo L
    Australas Phys Eng Sci Med; 2019 Dec; 42(4):1117-1128. PubMed ID: 31691168
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Statistical image reconstruction with beam-hardening compensation for X-ray CT by a calibration step (2DIterBH).
    Sanderson D; Martinez C; Fessler JA; Desco M; Abella M
    Med Phys; 2024 Aug; 51(8):5204-5213. PubMed ID: 38873959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of SPECT-CT Hybrid Imaging Using Iterative Image Reconstruction for Low-Dose CT: A Phantom Study.
    Grosser OS; Kupitz D; Ruf J; Czuczwara D; Steffen IG; Furth C; Thormann M; Loewenthal D; Ricke J; Amthauer H
    PLoS One; 2015; 10(9):e0138658. PubMed ID: 26390216
    [TBL] [Abstract][Full Text] [Related]  

  • 37. l0 regularization based on a prior image incorporated non-local means for limited-angle X-ray CT reconstruction.
    Zhang L; Zeng L; Guo Y
    J Xray Sci Technol; 2018; 26(3):481-498. PubMed ID: 29562578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Iterative image reconstruction using modified non-local means filtering for limited-angle computed tomography.
    Qi H; Chen Z; Wu S; Xu Y; Zhou L
    Phys Med; 2016 Sep; 32(9):1041-51. PubMed ID: 27501875
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of adaptive statistical iterative reconstruction algorithm for dose reduction in CT: A pediatric oncology perspective.
    Brady SL; Yee BS; Kaufman RA
    Med Phys; 2012 Sep; 39(9):5520-31. PubMed ID: 22957619
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Projection data smoothing through noise-level weighted total variation regularization for low-dose computed tomography.
    Deng X; Zhao Y; Li H
    J Xray Sci Technol; 2019; 27(3):537-557. PubMed ID: 31282470
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.