BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 31811848)

  • 1. Hybridization between cellulose nanofibrils and faceted silver nanoparticles used with surface enhanced Raman scattering for trace dye detection.
    Gu J; Dichiara A
    Int J Biol Macromol; 2020 Jan; 143():85-92. PubMed ID: 31811848
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of cellulose nanofibril bound silver nanoprism for surface enhanced Raman scattering.
    Jiang F; Hsieh YL
    Biomacromolecules; 2014 Oct; 15(10):3608-16. PubMed ID: 25189757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Facile synthesis of nanocellulose-based Cu
    Luo Y; Xing L; Hu C; Zhang W; Lin X; Gu J
    Int J Biol Macromol; 2022 Apr; 205():366-375. PubMed ID: 35192906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose nanofibers coated with silver nanoparticles as a flexible nanocomposite for measurement of flusilazole residues in Oolong tea by surface-enhanced Raman spectroscopy.
    Chen X; Lin H; Xu T; Lai K; Han X; Lin M
    Food Chem; 2020 Jun; 315():126276. PubMed ID: 32014669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose nanofibers coated with silver nanoparticles as a SERS platform for detection of pesticides in apples.
    Liou P; Nayigiziki FX; Kong F; Mustapha A; Lin M
    Carbohydr Polym; 2017 Feb; 157():643-650. PubMed ID: 27987973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of cellulose Nanofiber-based substrates for rapid detection of ferbam in kale by Surface-enhanced Raman spectroscopy.
    Sun L; Yu Z; Alsammarraie FK; Lin MH; Kong F; Huang M; Lin M
    Food Chem; 2021 Jun; 347():129023. PubMed ID: 33484959
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Silver-nanoparticle-based surface-enhanced Raman scattering wiper for the detection of dye adulteration of medicinal herbs.
    Li D; Zhu Q; Lv D; Zheng B; Liu Y; Chai Y; Lu F
    Anal Bioanal Chem; 2015 Aug; 407(20):6031-9. PubMed ID: 26044737
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of silver nanoparticles in antimicrobial products using surface-enhanced Raman spectroscopy (SERS).
    Guo H; Zhang Z; Xing B; Mukherjee A; Musante C; White JC; He L
    Environ Sci Technol; 2015 Apr; 49(7):4317-24. PubMed ID: 25775209
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapid and sensitive detection of malachite green in aquaculture water by electrochemical preconcentration and surface-enhanced Raman scattering.
    Xu KX; Guo MH; Huang YP; Li XD; Sun JJ
    Talanta; 2018 Apr; 180():383-388. PubMed ID: 29332827
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silver nanoparticles decorated filter paper via self-sacrificing reduction for membrane extraction surface-enhanced Raman spectroscopy detection.
    Meng Y; Lai Y; Jiang X; Zhao Q; Zhan J
    Analyst; 2013 Apr; 138(7):2090-5. PubMed ID: 23435112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of graphene oxide/Ag hybrids and their surface-enhanced Raman scattering characteristics.
    Qian Z; Cheng Y; Zhou X; Wu J; Xu G
    J Colloid Interface Sci; 2013 May; 397():103-7. PubMed ID: 23425548
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Au Nanoparticles Deposited on Magnetic Carbon Nanofibers as the Ultrahigh Sensitive Substrate for Surface-Enhanced Raman Scattering: Detections of Rhodamine 6G and Aromatic Amino Acids.
    Wu HC; Chen TC; Tsai HJ; Chen CS
    Langmuir; 2018 Nov; 34(47):14158-14168. PubMed ID: 30380878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microchip isotachophoresis coupled to surface-enhanced Raman spectroscopy for pharmaceutical analysis.
    Masár M; Troška P; Hradski J; Talian I
    Mikrochim Acta; 2020 Jul; 187(8):448. PubMed ID: 32676809
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simultaneous green synthesis and in-situ impregnation of silver nanoparticles into organic nanofibers by Lythrum salicaria extract: Morphological, thermal, antimicrobial and release properties.
    Mohammadalinejhad S; Almasi H; Esmaiili M
    Mater Sci Eng C Mater Biol Appl; 2019 Dec; 105():110115. PubMed ID: 31546384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol.
    Zhang P; Shao C; Zhang Z; Zhang M; Mu J; Guo Z; Liu Y
    Nanoscale; 2011 Aug; 3(8):3357-63. PubMed ID: 21761072
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A facile and green method for synthesis of reduced graphene oxide/Ag hybrids as efficient surface enhanced Raman scattering platforms.
    Huang Q; Wang J; Wei W; Yan Q; Wu C; Zhu X
    J Hazard Mater; 2015; 283():123-30. PubMed ID: 25262484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication of surface-enhanced Raman spectroscopy substrates using silver nanoparticles produced by laser ablation in liquids.
    Ondieki AM; Birech Z; Kaduki KA; Mwangi PW; Mwenze NM; Juma M; Jeptoo C; Dlamini MS; Maaza M
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Aug; 296():122694. PubMed ID: 37030254
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A controlled and reproducible pathway to dye-tagged, encapsulated silver nanoparticles as substrates for SERS multiplexing.
    Brown LO; Doorn SK
    Langmuir; 2008 Mar; 24(6):2277-80. PubMed ID: 18278969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface-enhanced Raman scattering method for the identification of methicillin-resistant Staphylococcus aureus using positively charged silver nanoparticles.
    Chen X; Tang M; Liu Y; Huang J; Liu Z; Tian H; Zheng Y; de la Chapelle ML; Zhang Y; Fu W
    Mikrochim Acta; 2019 Jan; 186(2):102. PubMed ID: 30637528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A three-dimensional silver nanoparticles decorated plasmonic paper strip for SERS detection of low-abundance molecules.
    Li Y; Zhang K; Zhao J; Ji J; Ji C; Liu B
    Talanta; 2016 Jan; 147():493-500. PubMed ID: 26592638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.