These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31811907)

  • 1. Harnessing altered oxidative metabolism in cancer by augmented prooxidant therapy.
    Firczuk M; Bajor M; Graczyk-Jarzynka A; Fidyt K; Goral A; Zagozdzon R
    Cancer Lett; 2020 Feb; 471():1-11. PubMed ID: 31811907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A prooxidant mechanism for the anticancer and chemopreventive properties of plant polyphenols.
    Khan HY; Zubair H; Ullah MF; Ahmad A; Hadi SM
    Curr Drug Targets; 2012 Dec; 13(14):1738-49. PubMed ID: 23140285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The differential role of reactive oxygen species in early and late stages of cancer.
    Assi M
    Am J Physiol Regul Integr Comp Physiol; 2017 Dec; 313(6):R646-R653. PubMed ID: 28835450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic therapy of cancer by ascorbic acid involves redox cycling of exogenous/endogenous copper ions and generation of reactive oxygen species.
    Hadi SM; Ullah MF; Shamim U; Bhatt SH; Azmi AS
    Chemotherapy; 2010; 56(4):280-4. PubMed ID: 20714144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidative stress and therapeutic opportunities: focus on the Ewing's sarcoma family of tumors.
    Smith DG; Magwere T; Burchill SA
    Expert Rev Anticancer Ther; 2011 Feb; 11(2):229-49. PubMed ID: 21342042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental therapeutics: targeting the redox Achilles heel of cancer.
    Cabello CM; Bair WB; Wondrak GT
    Curr Opin Investig Drugs; 2007 Dec; 8(12):1022-37. PubMed ID: 18058573
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Understanding of ROS-Inducing Strategy in Anticancer Therapy.
    Kim SJ; Kim HS; Seo YR
    Oxid Med Cell Longev; 2019; 2019():5381692. PubMed ID: 31929855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular chaperone Hsp90 as a target for oxidant-based anticancer therapies.
    Beck R; Dejeans N; Glorieux C; Pedrosa RC; Vásquez D; Valderrama JA; Calderon PB; Verrax J
    Curr Med Chem; 2011; 18(18):2816-25. PubMed ID: 21568884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyphenols as Modulator of Oxidative Stress in Cancer Disease: New Therapeutic Strategies.
    Mileo AM; Miccadei S
    Oxid Med Cell Longev; 2016; 2016():6475624. PubMed ID: 26649142
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer cell killing via ROS: to increase or decrease, that is the question.
    Wang J; Yi J
    Cancer Biol Ther; 2008 Dec; 7(12):1875-84. PubMed ID: 18981733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The redox-active nanomaterial toolbox for cancer therapy.
    Ibañez IL; Notcovich C; Catalano PN; Bellino MG; Durán H
    Cancer Lett; 2015 Apr; 359(1):9-19. PubMed ID: 25597786
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Redox cycling of endogenous copper by ferulic acid leads to cellular DNA breakage and consequent cell death: A putative cancer chemotherapy mechanism.
    Sarwar T; Zafaryab M; Husain MA; Ishqi HM; Rehman SU; Rizvi MM; Tabish M
    Toxicol Appl Pharmacol; 2015 Dec; 289(2):251-61. PubMed ID: 26415834
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cROSsing the Line: Between Beneficial and Harmful Effects of Reactive Oxygen Species in B-Cell Malignancies.
    Domka K; Goral A; Firczuk M
    Front Immunol; 2020; 11():1538. PubMed ID: 32793211
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of Reactive Oxygen Species (ROS) in Therapeutics and Drug Resistance in Cancer and Bacteria.
    Dharmaraja AT
    J Med Chem; 2017 Apr; 60(8):3221-3240. PubMed ID: 28135088
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Engineered Polymeric Micelles for Combinational Oxidation Anticancer Therapy through Concurrent HO-1 Inhibition and ROS Generation.
    Noh J; Jung E; Lee J; Hyun H; Hong S; Lee D
    Biomacromolecules; 2019 Feb; 20(2):1109-1117. PubMed ID: 30605610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Targeting antioxidant enzymes as a radiosensitizing strategy.
    Jiang H; Wang H; De Ridder M
    Cancer Lett; 2018 Dec; 438():154-164. PubMed ID: 30223069
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases.
    Korge P; Calmettes G; Weiss JN
    Biochim Biophys Acta; 2015; 1847(6-7):514-25. PubMed ID: 25701705
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and discovery of novel quinazolinedione-based redox modulators as therapies for pancreatic cancer.
    Pathania D; Sechi M; Palomba M; Sanna V; Berrettini F; Sias A; Taheri L; Neamati N
    Biochim Biophys Acta; 2014 Jan; 1840(1):332-43. PubMed ID: 23954204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reactive oxygen species in redox cancer therapy.
    Tong L; Chuang CC; Wu S; Zuo L
    Cancer Lett; 2015 Oct; 367(1):18-25. PubMed ID: 26187782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Free radicals, metals and antioxidants in oxidative stress-induced cancer.
    Valko M; Rhodes CJ; Moncol J; Izakovic M; Mazur M
    Chem Biol Interact; 2006 Mar; 160(1):1-40. PubMed ID: 16430879
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.