These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 31811907)
41. Induction of reactive oxygen species: an emerging approach for cancer therapy. Zou Z; Chang H; Li H; Wang S Apoptosis; 2017 Nov; 22(11):1321-1335. PubMed ID: 28936716 [TBL] [Abstract][Full Text] [Related]
42. The functional role of peroxiredoxin 3 in reactive oxygen species, apoptosis, and chemoresistance of cancer cells. Li L; Yu AQ J Cancer Res Clin Oncol; 2015 Dec; 141(12):2071-7. PubMed ID: 25875582 [TBL] [Abstract][Full Text] [Related]
43. Tea polyphenols modulate antioxidant redox system on cisplatin-induced reactive oxygen species generation in a human breast cancer cell. Periasamy VS; Alshatwi AA Basic Clin Pharmacol Toxicol; 2013 Jun; 112(6):374-84. PubMed ID: 23145928 [TBL] [Abstract][Full Text] [Related]
44. Glutathione and antioxidant enzymes serve complementary roles in protecting activated hepatic stellate cells against hydrogen peroxide-induced cell death. Dunning S; Ur Rehman A; Tiebosch MH; Hannivoort RA; Haijer FW; Woudenberg J; van den Heuvel FA; Buist-Homan M; Faber KN; Moshage H Biochim Biophys Acta; 2013 Dec; 1832(12):2027-34. PubMed ID: 23871839 [TBL] [Abstract][Full Text] [Related]
45. Alteration of subcellular redox equilibrium and the consequent oxidative modification of nuclear factor kappaB are critical for anticancer cytotoxicity by emodin, a reactive oxygen species-producing agent. Jing Y; Yang J; Wang Y; Li H; Chen Y; Hu Q; Shi G; Tang X; Yi J Free Radic Biol Med; 2006 Jun; 40(12):2183-97. PubMed ID: 16785032 [TBL] [Abstract][Full Text] [Related]
46. Antioxidant and prooxidant effects of Piptadeniastrum africanum as the possible rationale behind its broad scale application in African ethnomedicine. Dlamini LM; Tata CM; Djuidje MCF; Ikhile MI; Nikolova GD; Karamalakova YD; Gadjeva VG; Zheleva AM; Njobeh PB; Ndinteh DT J Ethnopharmacol; 2019 Mar; 231():429-437. PubMed ID: 30503766 [TBL] [Abstract][Full Text] [Related]
47. Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy. Glorieux C; Dejeans N; Sid B; Beck R; Calderon PB; Verrax J Biochem Pharmacol; 2011 Nov; 82(10):1384-90. PubMed ID: 21689642 [TBL] [Abstract][Full Text] [Related]
49. The Dual Antioxidant/Prooxidant Effect of Eugenol and Its Action in Cancer Development and Treatment. Bezerra DP; Militão GCG; de Morais MC; de Sousa DP Nutrients; 2017 Dec; 9(12):. PubMed ID: 29258206 [TBL] [Abstract][Full Text] [Related]
50. Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment. Kwon S; Ko H; You DG; Kataoka K; Park JH Acc Chem Res; 2019 Jul; 52(7):1771-1782. PubMed ID: 31241894 [TBL] [Abstract][Full Text] [Related]
51. A paradoxical chemoresistance and tumor suppressive role of antioxidant in solid cancer cells: a strange case of Dr. Jekyll and Mr. Hyde. Kwee JK Biomed Res Int; 2014; 2014():209845. PubMed ID: 24800215 [TBL] [Abstract][Full Text] [Related]
52. Transcriptional profiling of Scedosporium apiospermum enzymatic antioxidant gene battery unravels the involvement of thioredoxin reductases against chemical and phagocytic cells oxidative stress. Staerck C; Tabiasco J; Godon C; Delneste Y; Bouchara JP; Fleury MJJ Med Mycol; 2019 Apr; 57(3):363-373. PubMed ID: 29889264 [TBL] [Abstract][Full Text] [Related]
54. Modulating ROS to overcome multidrug resistance in cancer. Cui Q; Wang JQ; Assaraf YG; Ren L; Gupta P; Wei L; Ashby CR; Yang DH; Chen ZS Drug Resist Updat; 2018 Nov; 41():1-25. PubMed ID: 30471641 [TBL] [Abstract][Full Text] [Related]
55. Targeting Mitochondrial Calcium Handling and Reactive Oxygen Species in Heart Failure. Dietl A; Maack C Curr Heart Fail Rep; 2017 Aug; 14(4):338-349. PubMed ID: 28656516 [TBL] [Abstract][Full Text] [Related]
56. 2,7-dichlorofluorescin oxidation and reactive oxygen species: what does it measure? Jakubowski W; Bartosz G Cell Biol Int; 2000; 24(10):757-60. PubMed ID: 11023655 [TBL] [Abstract][Full Text] [Related]
57. Oxidative and antioxidative mechanisms in oral cancer and precancer: a review. Choudhari SK; Chaudhary M; Gadbail AR; Sharma A; Tekade S Oral Oncol; 2014 Jan; 50(1):10-8. PubMed ID: 24126222 [TBL] [Abstract][Full Text] [Related]
58. Oxidant Mechanisms in Renal Injury and Disease. Ratliff BB; Abdulmahdi W; Pawar R; Wolin MS Antioxid Redox Signal; 2016 Jul; 25(3):119-46. PubMed ID: 26906267 [TBL] [Abstract][Full Text] [Related]
59. Redox-active and redox-silent compounds: synergistic therapeutics in cancer. Tomasetti M; Santarelli L; Alleva R; Dong LF; Neuzil J Curr Med Chem; 2015; 22(5):552-68. PubMed ID: 25245377 [TBL] [Abstract][Full Text] [Related]
60. Targeted Inhibition of Glutamine-Dependent Glutathione Metabolism Overcomes Death Resistance Induced by Chronic Cycling Hypoxia. Matschke J; Riffkin H; Klein D; Handrick R; Lüdemann L; Metzen E; Shlomi T; Stuschke M; Jendrossek V Antioxid Redox Signal; 2016 Jul; 25(2):89-107. PubMed ID: 27021152 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]